One contribution to the second-order self-force calculations is the derivative of the first-order metric perturbation with respect to the slow inspiral time. Previous methods to compute this involve non-compact source terms which are challenging to work with. We employ the method of partial annihilators to obtain higher-order differential equations with a compact source, and solve these equations for the slowtime derivatives of the Regge-Wheeler and Zerilli master functions for circular orbits. We then use a gauge transformation to compute the slowtime derivative of the first-order Lorenz gauge metric perturbation.


Talk Number PIRSA:21060037
Speaker Profile Leanne Durkan