PIRSA:21010006

Conformal embedding of random planar maps

APA

Holden, N. (2021). Conformal embedding of random planar maps. Perimeter Institute. https://pirsa.org/21010006

MLA

Holden, Nina. Conformal embedding of random planar maps. Perimeter Institute, Jan. 13, 2021, https://pirsa.org/21010006

BibTex

          @misc{ pirsa_PIRSA:21010006,
            doi = {10.48660/21010006},
            url = {https://pirsa.org/21010006},
            author = {Holden, Nina},
            keywords = {Other},
            language = {en},
            title = {Conformal embedding of random planar maps},
            publisher = {Perimeter Institute},
            year = {2021},
            month = {jan},
            note = {PIRSA:21010006 see, \url{https://pirsa.org}}
          }
          

Nina Holden

ETH Zurich

Talk number
PIRSA:21010006
Collection
Talk Type
Subject
Abstract

A planar map is a canonical model for a discrete surface which is studied in probability theory, combinatorics, theoretical physics, and geometry. Liouville quantum gravity provides a natural model for a continuum random surface with roots in string theory and conformal field theory. After introducing these objects, I will present a joint work with Xin Sun where we prove convergence of random planar maps to a Liouville quantum gravity surface under a discrete conformal embedding which we call the Cardy embedding.