Rotational analysis of a vibrational transition in the 199Hg2 molecule: a first step in an experimental realization of a spin-1/2 particle version of the EPR experiment Authors: Edward S. Fry and Xinmei Qu
APA
(2006). Rotational analysis of a vibrational transition in the 199Hg2 molecule: a first step in an experimental realization of a spin-1/2 particle version of the EPR experiment Authors: Edward S. Fry and Xinmei Qu. Perimeter Institute. https://pirsa.org/06070052
MLA
Rotational analysis of a vibrational transition in the 199Hg2 molecule: a first step in an experimental realization of a spin-1/2 particle version of the EPR experiment Authors: Edward S. Fry and Xinmei Qu. Perimeter Institute, Jul. 20, 2006, https://pirsa.org/06070052
BibTex
@misc{ pirsa_PIRSA:06070052, doi = {10.48660/06070052}, url = {https://pirsa.org/06070052}, author = {}, keywords = {}, language = {en}, title = {Rotational analysis of a vibrational transition in the 199Hg2 molecule: a first step in an experimental realization of a spin-1/2 particle version of the EPR experiment Authors: Edward S. Fry and Xinmei Qu}, publisher = {Perimeter Institute}, year = {2006}, month = {jul}, note = {PIRSA:06070052 see, \url{https://pirsa.org}} }
Talk Type
Abstract
An experimental realization of our spin-1/2 particle version of the Einstein-Podolsky-Rosen (EPR) experiment will be briefly reviewed. In the proposed experiment, two 199Hg atoms in the ground 1S0 electronic state, each with nuclear spin I=1/2, are generated in an entangled state with total nuclear spin zero. Such a state can be obtained by dissociation of a 199Hg2 molecule (dimer) using a spectroscopically selective stimulated Raman process. From symmetry considerations, the nuclear spin singlet state is guaranteed if the initial 199Hg2 molecule is in a rotational state with an even quantum number. Consequently, a thorough investigation and analysis of the rotational structure of the 199Hg2 molecule is required; results of this analysis will be presented.