PIRSA:08040036

Computing Unconventional Quantum Phase Transitions

APA

Melko, R. (2008). Computing Unconventional Quantum Phase Transitions. Perimeter Institute. https://pirsa.org/08040036

MLA

Melko, Roger. Computing Unconventional Quantum Phase Transitions. Perimeter Institute, Apr. 24, 2008, https://pirsa.org/08040036

BibTex

          @misc{ pirsa_PIRSA:08040036,
            doi = {10.48660/08040036},
            url = {https://pirsa.org/08040036},
            author = {Melko, Roger},
            keywords = {},
            language = {en},
            title = {Computing Unconventional Quantum Phase Transitions},
            publisher = {Perimeter Institute},
            year = {2008},
            month = {apr},
            note = {PIRSA:08040036 see, \url{https://pirsa.org}}
          }
          

Roger Melko

University of Waterloo

Talk number
PIRSA:08040036
Talk Type
Abstract
Calculating universal properties of quantum phase transitions in microscopic Hamiltonians is a challenging task, made possible through large-scale numerical simulations coupled with finite-size scaling analyses. The continuing advancement of quantum Monte Carlo technologies, together with modern high-performance computing infrastructure, has made amenable a new class of quantum Heisenberg Hamiltonian with four-spin exchange, which may harbor a continuous Néel-to-Valence Bond Solid quantum phase transition. Such an exotic quantum critical point would necessarily lie outside of the standard Landau-Ginzburg-Wilson paradigm, and may contain novel physical phenomena such as emergent topological order and quantum number fractionalization. I will discuss efforts to calculate universal critical exponents using large-scale quantum Monte Carlo simulations, and compare them to theoretical predictions, in particular from the recent theory of deconfined quantum criticality.