Select All
PIRSA:09090100

A First-Principles Implementation of Scale Invariance Using Best Matching

APA

Westman, H. (2009). A First-Principles Implementation of Scale Invariance Using Best Matching. Perimeter Institute. https://pirsa.org/09090100

Talk number
PIRSA:09090100
Collection
Abstract
We present a first-principles implementation of {\em spatial} scale invariance as a local gauge symmetry in geometry dynamics using the method of best matching. In addition to the 3-metric, the proposed scale invariant theory also contains a 3-vector potential A_k as a dynamical variable. Although some of the mathematics is similar to Weyl's ingenious, but physically questionable, theory, the equations of motion of this new theory are second order in time-derivatives. It is tempting to try to interpret the vector potential A_k as the electromagnetic field. We exhibit four independent reasons for not giving into this temptation. A more likely possibility is that it can play the role of ``dark matter''. Indeed, as noted in scale invariance seems to play a role in the MOND phenomenology. Spatial boundary conditions are derived from the free-endpoint variation method and a preliminary analysis of the constraints and their propagation in the Hamiltonian formulation is presented.