Mass gap, topological molecules, and strong gauge dynamics
APA
Unsal, M. (2012). Mass gap, topological molecules, and strong gauge dynamics. Perimeter Institute. https://pirsa.org/12030113
MLA
Unsal, Mithat. Mass gap, topological molecules, and strong gauge dynamics. Perimeter Institute, Mar. 21, 2012, https://pirsa.org/12030113
BibTex
@misc{ pirsa_PIRSA:12030113, doi = {10.48660/12030113}, url = {https://pirsa.org/12030113}, author = {Unsal, Mithat}, keywords = {}, language = {en}, title = {Mass gap, topological molecules, and strong gauge dynamics}, publisher = {Perimeter Institute}, year = {2012}, month = {mar}, note = {PIRSA:12030113 see, \url{https://pirsa.org}} }
San Francisco State University
Collection
Talk Type
Abstract
Mass, a concept familiar to all of us, is also
one of the deepest
mysteries in nature. Almost all of the mass in the visible universe,
you, me and any other stuff that we see around us, emerges from a
quantum field theory, called QCD, which has a completely negligible
microscopic mass content. How does QCD and the family of gauge
theories it belongs to generate a mass?
This class of non-perturbative problems remained largely elusive despite much
effort over the years. Recently, new ideas based on compactification have been
shown useful to address some of these. Two such inter-related ideas are circle
compactifications, which avoid phase transitions and large-N volume
independence. Through the first one, we realized the existence of a
large-class of "topological molecules", e.g. magnetic bions, which
generate mass gap in a class of compactified gauge theories. The inception of the
second, the idea of large-N volume independence is old. The new
progress is the realization of its first working examples. This property allows us to
map a four dimensional gauge theory (including pure Yang-Mills) to a quantum mechanics at large-N.
mysteries in nature. Almost all of the mass in the visible universe,
you, me and any other stuff that we see around us, emerges from a
quantum field theory, called QCD, which has a completely negligible
microscopic mass content. How does QCD and the family of gauge
theories it belongs to generate a mass?
This class of non-perturbative problems remained largely elusive despite much
effort over the years. Recently, new ideas based on compactification have been
shown useful to address some of these. Two such inter-related ideas are circle
compactifications, which avoid phase transitions and large-N volume
independence. Through the first one, we realized the existence of a
large-class of "topological molecules", e.g. magnetic bions, which
generate mass gap in a class of compactified gauge theories. The inception of the
second, the idea of large-N volume independence is old. The new
progress is the realization of its first working examples. This property allows us to
map a four dimensional gauge theory (including pure Yang-Mills) to a quantum mechanics at large-N.