The standard model of cosmology has some puzzles/problems such as the
cosmological constant problem and the horizon problem which according to
many stem from our lack of understanding of the very early universe. This in turn means that almost none of the theories of quantum gravity are at a
stage where anything substantial can be said about observational cosmology.
In the past few years Causal Set theory has proved itself different in this
case where a possible solution to the Cosmological constant problem was
proposed. Now some work in progress has also shown that some models of
Causal Set dynamics give exponential expansion in the early universe. I hope to discuss both of these exciting prospects but this talk will mainly focus on the first proposal.
We present the first year SDSS-II Supernova Survey results and their implications for cosmology and future supernova surveys. We then discuss challenges that face next-generation surveys, such as LSST, which will deliver of order a million supernovae without spectroscopic confirmation. As a way to address these challenges, we introduce BEAMS, a statistical method to do photometric supernova cosmology, and present a preliminary application to SDSS data. Finally we highlight the importance of future surveys such as LSST, given the surprising result that we may not detect dark energy dynamics for the next decade, if the dark energy scales during matter and radiation domination.