Can a relativistic quantum field theory be consistently described as a theory of localizable particles? There are many well-known obstructions to such a description. Here, we trace exactly how such obstructions arise in the regime between nonrelativistic quantum mechanics and relativistic quantum field theory. Perhaps unexpectedly, we find that in the nonrelativistic limit of QFT, there are persisting issues with the localizability of particle states. Related via the Reeh-Schlieder theorem, we also show that the fate of ground state entanglement and the Unruh effect is nontrivial in the nonrelativistic limit.
QFTs in 2+1 dimensions are powerful systems to understand the emergence of mass-gap and particle spectrum in QCD-like theories that describe our 3+1 dimensional world. Recently, these 2+1 dimensional systems have attracted even more attention due to conjectured dualities between seemingly very different theories and due to their applications to condensed matter systems. In this talk, I will describe our numerical investigations of the infrared behaviors of 2+1 dimensional U(1) and SU(N) gauge theories coupled to many favors of massless fermions using lattice regularization. I will also explain how lattice formulation is a potential tool to study and check particle-vortex dualities.
The influx of new and high-quality cosmological data from upcoming cosmic microwave background (CMB) and large-scale structure surveys will provide unique and exciting opportunities to study the fundamental constituents of the Universe in the upcoming few years. In particular, measurements of second-order effects in the CMB will become observationally significant for the fist time as surveys will achieve the necessary precision. Such second-order effects include weak gravitational lensing by large-scale structure; the integrated Sachs-Wolfe and Rees-Sciama effects, which describe the redshift effect on CMB photons due to evolving gravitational potentials along the line of sight; and the Sunyaev-Zel'dovich effect where CMB photons Compton scatter with free electrons in galaxy clusters and the intergalactic medium. In parallel, surveys of the 21cm hydrogen line will achieve sufficient accuracy for cosmological inference. In this talk I will describe how these new cosmological probes provide opportunities to study old fundamental problems. I will focus on two new probes: the moving lens effect on the CMB (Hotinli 2019, PRL) and the velocity acoustic oscillations (`so-called' VAOs) in the 21cm hydrogen. I will describe how these observables can be utilised to constrain a class of early Universe models.
Defining entanglement in a continuum field theory is a subtle challenge, because the Hilbert space does not naively factorize into local products. For gauge theories, the problem arises from the gauss law constraint, and it can be resolved by an extension of the Hilbert space which introduces edge modes at the entangling surface. Recently we showed how this extension fits inside the frame work of 2D extended topological field theory. In this talk we attempt a generalization to 2D CFTs in which factorization is determined by the fusion rules. Time permitting we will speculate on applications, e.g to continuum constructions of tensor networks and to entanglement in string theory
milliQan is a proposed search for milli-charged particles produced at the LHC with expected sensitivity to charges of between 0.1e and 0.001e for masses in 0.1 - 100 GeV range. The proposed detector is an array of 4 stacks of 60 cm long plastic scintillator arrays read out by PMTs. It will be installed in an existing tunnel 33 m from the CMS interaction point at the LHC, with 17 m of rock shielding to suppress beam backgrounds. In the fall of 2017 a 1% scale “demonstrator” of the proposed detector was installed at the planned site in order to study the feasibility of the experiment, focusing on understanding various background sources such as radioactivity of materials, PMT dark current, cosmic rays, and beam induced backgrounds. In this talk I will discuss the general concept of the experiment, the results from the demonstrator, and the plan for the future.
Docker provides "containerization" for software -- a way to package up a piece of software and all its dependencies, so that it can run the same way on different computers. It is a promising technology for scientists, both for reproducibility, ease of collaboration, and for running software on different computers (like your laptop and different clusters). I will go through the why and how of using Docker. For supercomputers (such as our Symmetry machine), Docker isn't allowed due to security issues, but the Singularity program allows users to run Docker containers, so I'll show you how to run your Docker container on Symmetry using Singularity.
A tremendous amount of recent attention has focused on characterizing the dynamical properties of periodically driven many-body systems. Here, we use a novel numerical tool termed ‘density matrix truncation’ (DMT) to investigate the long-time dynamics of large-scale Floquet systems. By implementing a spatially inhomogeneous drive to a 1D quantum chain, we demonstrate that an interplay between Floquet heating and diffusive transport is crucial to understanding the system’s dynamics. We find that DMT accurately captures two essential pieces of Floquet physics, namely prethermalization and late-time heating to infinite temperature. Moreover, we show that these two aspects are driven by different microscopic mechanisms.
We study dimensionally restricted non-perturbative causal set quantum dynamics in two and three spacetime dimensions with non-trivial global spatial topology. The causal set sample space is generated from causal embeddings into latticisations of flat background spacetimes with global spatial topology and in two and three dimensions, respectively. The quantum gravity partition function over these sample spaces is studied using Markov Chain Monte Carlo (MCMC) simulations via an analytic continuation of a parameter analogous to an inverse temperature. In both two and three dimensions we find a phase transition that separates the dominance of the action from that of the entropy. The action dominated phase is characterised by "layered" posets with a high degree of connectivity, while the causal sets in the entropy dominated phase are manifold-like. These results are similar in character to those obtained for topologically trivial causal set dynamics over the sample space of 2-orders. The current simulations use a newly developed framework for causal set MCMC calculations, and provide the first implementation of a three-dimensional causal set dynamics.
A recent construction of HOMFLY-PT knot homology by Oblomkov-Rozansky has its physical origin in “B-twisted” 3D N=4 gauge theory, with adjoint and fundamental matter. Mathematically, the construction uses certain categories of matrix factorization. We apply 3D Mirror Symmetry to identify an A-twisted mirror of this construction. In the case of algebraic knots, we find that knot homology on the A side gets expressed as cohomology of affine Springer fibers (related but not identical to work if Gorsky-Oblomkov-Rasmussen-Shende). More generally, we propose a Fukaya-Seidel category mirror to the Oblomkov-Rozansky matrix factorization. Joint work with N Garner, J Hilburn, A Oblomkov, and L Rozansky.