Talks by Mia Hughes

Division algebraic symmetry breaking

Can the 32C-dimensional algebra R(x)C(x)H(x)O offer anything new for particle physics? Indeed it can. Here we identify a sequence of complex structures within R(x)C(x)H(x)O which sets in motion a cascade of breaking symmetries: Spin(10) -> Pati-Salam -> Left-Right symmetric -> Standard model + B-L (both pre- and post-Higgs-mechanism). These complex structures derive from the octonions, then from the quaternions, then from the complex numbers.

A Magic Pyramid of Supergravity Theories from Yang-Mills Squared

Mia Hughes Imperial College London
"I will begin by reviewing the unified description of pure Super Yang-Mills (SYM) Theory (consisting of just a gauge field and gaugino) in dimensions 3, 4, 6, and 10 over the four normed division algebras R, C, H, and O. Dimensionally reducing these initial theories into dimensions 3, 4, 5, 6, 7, 8, 9, 10 gives a plethora of SYM theories written over the division algebras, with a single master Lagrangian to rule them all. In particular, in D = 3 spacetime dimensions, the SYM theories with N = 1, 2, 4, and 8 supersymmetries enjoy a unified description over R, C, H, and O, respectively.