We present an information-theoretically secure protocol for the
transmission of a quantum state between an anonymous sender and an
anonymous receiver. The anonymity is perfect and so is the privacy
of the message. No assumption is made on the number of honest
participants and this leads to a protocol in which a single participant can cause an abort. Unless the receiver is corrupt, the quantum state is never destroyed; thus the state is either transferred to the receiver or it remains in the hands of the sender.
For most variations of Quantum finite automata (QFA), it is an open question to characterize the language recognition power of these machines. We extend several techniques used to obtain lower bounds on Kondacs and Watrous' 1-way Quantum Finite Automata to the case of Nayak's Generalized Quantum Finite Automata (GQFA). A consequence of these results is that the class of languages recognized by GQFAs is not closed under union.
A new source of polarization entangled photons is presented based on a bidirectionally pumped spontaneous parametric down-conversion crystal in the loop of a Sagnac interferometer. The source is pumped with a pulsed Ti:SA laser, allowing for high photon pair production rates and the potential for multi-photon experiments. Implementation, detection, and preliminary experimental results will be discussed.
Almost all known superpolynomial quantum speedups over classical algorithms have used the quantum Fourier transform (QFT). Most known applications of the QFT make use of the QFT over abelian groups, including Shor’s well known factoring algorithm [1]. However, the QFT can be generalised to act on non-abelian groups allowing different applications. For example, Kuperberg solves the dihedral hidden subgroup problem in subexponential time using the QFT on the dihedral group. The aim of this research is to construct an efficient QFT on SU(2). Most of the progress in constructing QFTs has come from applying ideas from classical algorithms such as subgroup adapted bases. For example, Moore et al. have applied classical ideas from e.g. to build non-abelian QFTs. Applying these ideas to infinite groups such as SU(2) requires new tools. The function must be sampled or discretised in a way so as to minimise the error. I will present some ideas based on classical algorithms which may lead to a QFT over the group SU(2) for band limited functions. There are problems with making these algorithms unitary that must be addressed and efficient methods for calculating coefficients (cf. the controlled phase gates in the abelian case) must be found.
An approximate quantum encryption scheme uses a private key to encrypt a quantum state while leaking only a very small (though non-zero) amount of information to the adversary. Previous work has shown that while we need 2n bits of key to encrypt n qubits exactly, we can get away with only n bits in the approximate case, provided that we know that the state to be encrypted is not entangled with something that the adversary already has in his possession. In this talk I will show a generalization of this result: approximate quantum encryption requires roughly n-t bits of key, where t is a lower bound on the conditional min-entropy of the state to be encrypted given the adversary's prior knowledge. Along the way, I will introduce a quantum version of entropic security and show how the approximate quantum encryption scheme fits within this framework. This is joint work with Simon-Pierre Desrosiers.