The talk will focus on tensor categories associated with 3d N=2 theories and chiral algebras associated with 2d N=(0,2) theories, as well as their combinations that involve 3d N=2 theories "sandwiched" by half-BPS boundary conditions and interfaces. Such situations, originally studied in a joint work with A.Gadde and P.Putrov, have a variety of applications, including applications to topology of 3-manifolds and 4-manifolds where Kirby moves translate into novel dualities of 3d N=2 and 2d N=(0,2) theories and where the corresponding algebraic structures can be related to COHAs. After reviewing some elements of that story going back to 2013, I will focus on the latest developments in the area of "3d Modularity" where mock Jacobi forms, SL(2,Z) Weil representations, quantum modular forms, non-semisimple modular tensor categories, and chiral algebras of logarithmic CFTs make a surprising appearance (based on recent and ongoing work with M.Cheng, S.Chun, F.Ferrari, S.Harrison and B.Feigin).