PIRSA:19020059

Categorification of 2d cohomological Hall algebras

APA

Sala, F. (2019). Categorification of 2d cohomological Hall algebras. Perimeter Institute. https://pirsa.org/19020059

MLA

Sala, Francesco. Categorification of 2d cohomological Hall algebras. Perimeter Institute, Feb. 26, 2019, https://pirsa.org/19020059

BibTex

          @misc{ pirsa_19020059,
            doi = {},
            url = {https://pirsa.org/19020059},
            author = {Sala, Francesco},
            keywords = {Mathematical physics},
            language = {en},
            title = {Categorification of 2d cohomological Hall algebras},
            publisher = {Perimeter Institute},
            year = {2019},
            month = {feb},
            note = {PIRSA:19020059 see, \url{https://pirsa.org}}
          }
          

Abstract

Let $\mathcal{M}$ denote the moduli stack of either coherent sheaves on a smooth projective surface or Higgs sheaves on a smooth projective curve $X$. The convolution algebra structure on the Borel-Moore homology of $\mathcal{M}$ is an instance of two-dimensional cohomological Hall algebras. In the present talk, I will describe a full categorication of the cohomological Hall algebra of $\mathcal{M}$. This is achieved by exhibiting a derived enhancement of $\mathcal{M}$. Furthermore, this method applies also to several other moduli stacks, such as the moduli stack of vector bundles with flat connections on $X$ and the moduli stack of finite-dimensional representations of the fundamental group of $X$. In the second part of the talk, I will focus on the case of curves and discuss some relations between the Betti, de Rham, and Dolbeaut categorified cohomological Hall algebras. This is based on a work in progress with Mauro Porta.