Select All
PIRSA:19050001

Multiple zeta values in deformation quantization

APA

Pym, B. (2019). Multiple zeta values in deformation quantization. Perimeter Institute. https://pirsa.org/19050001

Brent Pym McGill University

Talk numberPIRSA:19050001

Abstract

In 1997, Kontsevich gave a universal solution to the "deformation quantization" problem in mathematical physics: starting from any Poisson manifold (the classical phase space), it produces a  noncommutative algebra of quantum observables by deforming the ordinary multiplication of functions.  His formula is a Feynma  expansion, involving an infinite sum over graphs, weighted by volume integrals on the moduli space of marked holomorphic disks. The precise values of these integrals are currently unknown.  I will describe recent joint work with Banks and Panzer, in which we develop a theory of integration on these moduli spaces via suitable sheaves of polylogarithms, and use it to prove that Kontsevich's integrals evaluate to integer-linear combinations of special transcendental constants called multiple zeta values, yielding the first algorithm for their calculation.