Bergman's Diamond Lemma for ring theory gives an algorithm to produce a (non-canonical) basis for a ring presented by generators and relations. After demonstrating this algorithm in concrete, geometrically-minded examples, I'll turn to preprojective algebras and their multiplicative counterparts. Using the Diamond Lemma, I'll reprove a few classical results for preprojective algebras. Then I'll propose a conjectural basis for multiplicative preprojective algebras. Finally I'll explain why the set is a basis in the case of multiplicative preprojective algebras for quivers containing a cycle, the subject of joint work with Travis Schedler.


Talk Number PIRSA:19110080