Global Demazure modules
APA
Finkelberg, M. (2020). Global Demazure modules. Perimeter Institute. https://pirsa.org/20060031
MLA
Finkelberg, Michael. Global Demazure modules. Perimeter Institute, Jun. 24, 2020, https://pirsa.org/20060031
BibTex
@misc{ pirsa_PIRSA:20060031, doi = {10.48660/20060031}, url = {https://pirsa.org/20060031}, author = {Finkelberg, Michael}, keywords = {Mathematical physics}, language = {en}, title = {Global Demazure modules}, publisher = {Perimeter Institute}, year = {2020}, month = {jun}, note = {PIRSA:20060031 see, \url{https://pirsa.org}} }
National Research University Higher School of Economics
Collection
Talk Type
Subject
Abstract
The Beilinson-Drinfeld Grassmannian of a simple complex algebraic group admits a natural stratification into "global spherical Schubert varieties". In the case when the underlying curve is the affine line, we determine algebraically the global sections of the determinant line bundle over these global Schubert varieties as modules over the corresponding Lie algebra of currents. The resulting modules are the global Weyl modules (in the simply laced case) and generalizations thereof. This is a joint work with Ilya Dumanski and Evgeny Feigin.