## Abstract

The fermionic fields of one generation of the Standard Model, including the Lorentz spinor degrees of freedom, can be identified with components of a single real 64-dimensional semi-spinor representation S of the group Spin(11,3). I will describe an octonionic model for Spin(11,3) in which the semi-spinor representation gets identified with S=OxO', where O,O' are the usual and split octonions respectively. It is then well-known that choosing a unit imaginary octonion u in Im(O) equips O with a complex structure J. Similarly, choosing a unit imaginary split octonion u' in Im(O') equips O' with a complex structure J', except that there are now two inequivalent complex structures, one parametrised by a choice of a timelike and the other of a spacelike unit u'. In either case, the identification S=OxO' implies that there are two natural commuting complex structures J, J' on S. Our main new observation is that there is a choice of J,J' so that the subgroup of Spin(11,3) that commutes with both is the direct product SU(3)xU(1)xSU(2)_LxSU(2)_R x Spin(1,3) of the group of the left/right symmetric extension of the SM and Lorentz group. The splitting of S into eigenspaces of J corresponds to splitting into particles and anti-particles. The splitting of S into eigenspaces of J' corresponds to splitting of Lorentz Dirac spinors into two different chiralities.

## Details

**Talk Number**PIRSA:21040006

**Speaker Profile**Kirill Krasnov

**Collection**Octonions and the Standard Model

- Mathematical physics
- Particle Physics
- Quantum Fields and Strings

**Scientific Area**

- Conference

**Talk Type**