Moduli space of cactus flowers


Kamnitzer, J. (2022). Moduli space of cactus flowers. Perimeter Institute. https://pirsa.org/22110030


Kamnitzer, Joel. Moduli space of cactus flowers. Perimeter Institute, Nov. 18, 2022, https://pirsa.org/22110030


          @misc{ pirsa_PIRSA:22110030,
            doi = {10.48660/22110030},
            url = {https://pirsa.org/22110030},
            author = {Kamnitzer, Joel},
            keywords = {Mathematical physics},
            language = {en},
            title = {Moduli space of cactus flowers},
            publisher = {Perimeter Institute},
            year = {2022},
            month = {nov},
            note = {PIRSA:22110030 see, \url{https://pirsa.org}}

Joel Kamnitzer University of Toronto


The Deligne-Mumford moduli space of genus 0 curves plays many roles in representation theory.  For example, the fundamental group of its real locus is the cactus group which acts on tensor products of crystals.

I will discuss a variant on this space which parametrizes "cactus flower curves".  The fundamental group of the real locus of this space is the virtual cactus group.  This moduli space of cactus flower curves is also the parameter space for inhomogeneous Gaudin algebras.

Zoom link:  https://pitp.zoom.us/j/96658223425?pwd=NUxRN2FsdWJ1SWtHMlRDcTdHMGNPQT09