PIRSA:23080025

Merged talks - An effective field theory for non-maximal quantum chaos; 66- Effective description of sub-maximal chaos: stringy effects for SYK scrambling

APA

Gao, P. & Haehl, F. (2023). Merged talks - An effective field theory for non-maximal quantum chaos; 66- Effective description of sub-maximal chaos: stringy effects for SYK scrambling. Perimeter Institute. https://pirsa.org/23080025

MLA

Gao, Ping, and Felix Haehl. Merged talks - An effective field theory for non-maximal quantum chaos; 66- Effective description of sub-maximal chaos: stringy effects for SYK scrambling. Perimeter Institute, Aug. 03, 2023, https://pirsa.org/23080025

BibTex

          @misc{ pirsa_PIRSA:23080025,
            doi = {10.48660/23080025},
            url = {https://pirsa.org/23080025},
            author = {Gao, Ping and Haehl, Felix},
            keywords = {Quantum Fields and Strings, Quantum Information, Quantum Gravity},
            language = {en},
            title = {Merged talks - An effective field theory for non-maximal quantum chaos; 66- Effective description of sub-maximal chaos: stringy effects for SYK scrambling},
            publisher = {Perimeter Institute},
            year = {2023},
            month = {aug},
            note = {PIRSA:23080025 see, \url{https://pirsa.org}}
          }
          
Talk number
PIRSA:23080025
Collection
Abstract
66 - It has been proposed that the exponential decay and subsequent power law saturation of out-of-time-order correlation functions can be universally described by collective 'scramblon' modes. We develop this idea from a path integral perspective in several examples, thereby establishing a general formalism. After reformulating previous work on the Schwarzian theory and identity conformal blocks in two-dimensional CFTs relevant for systems in the infinite coupling limit with maximal quantum Lyapunov exponent, we focus on theories with sub-maximal chaos: we study the large-q limit of the SYK quantum dot and chain, both of which are amenable to analytical treatment at finite coupling. In both cases we identify the relevant scramblon modes, derive their effective action, and find bilocal vertex functions, thus constructing an effective description of chaos. The final results can be matched in detail to stringy corrections to the gravitational eikonal S-matrix in holographic CFTs, including a stringy Regge trajectory, bulk to boundary propagators, and multi-string effects that are unexplored holographically.