Integrable Deformations on Twistor Space
APA
Liniado, J. (2024). Integrable Deformations on Twistor Space. Perimeter Institute. https://pirsa.org/24050047
MLA
Liniado, Joaquin. Integrable Deformations on Twistor Space. Perimeter Institute, May. 02, 2024, https://pirsa.org/24050047
BibTex
@misc{ pirsa_PIRSA:24050047, doi = {10.48660/24050047}, url = {https://pirsa.org/24050047}, author = {Liniado, Joaquin}, keywords = {Mathematical physics}, language = {en}, title = {Integrable Deformations on Twistor Space}, publisher = {Perimeter Institute}, year = {2024}, month = {may}, note = {PIRSA:24050047 see, \url{https://pirsa.org}} }
Joaquin Liniado National University of La Plata
Abstract
Integrable field theories in two dimensions are known to originate as defect theories of 4d Chern-Simons theory and as symmetry reductions of the 4d anti-self-dual Yang-Mills equations. Based on ideas of Costello, it has been proposed in work of Bittleston and Skinner that these two approaches can be unified starting from holomorphic Chern-Simons theory in 6 dimensions. In this talk I will introduce the first complete description of this diamond of integrable theories for a family of deformed sigma models, going beyond the Dirichlet boundary conditions that have been considered thus far. The talk is based on the recent work https://arxiv.org/abs/2311.17551.
---