2017 marks 50 years since the seminal 1967 article of Kochen and Specker proving that quantum theory fails to admit of a noncontextual model. Despite the fact that the KochenSpecker theorem is one of the seminal results concerning the foundations of quantum theory, there has never been a large conference dedicated to the subject. The 50year anniversary of the theorem seems an opportune time to remedy this oversight. Furthermore, in the last decade, there have been tremendous advances in the field. New life has been breathed into the subject as old conceptual issues have been reexamined from a new informationtheoretic perspective. Importantly, there has been great progress in making the notion of noncontextuality robust to noise and therefore experimentally testable. Finally, there is mounting evidence that the resource that powers many quantum advantages for information processing is contextuality. In particular, it has been shown to underlie the possibility of universal quantum computation. Many groups worldwide are actively engaged in advancing our knowledge on each of these fronts and in deepening our understanding of the distinction between quantum and classical theories through the lens of contextuality. Through this conference, we aim to bring together leading researchers in the field in order to develop a broader perspective on the issues, draw connections between different approaches, foster a more cohesive community, and set objectives for future research.
Format results

How to go from the KS theorem to experimentally testable noncontextuality inequalities
Ravi Kunjwal Funds for Scientific Research  FNRS


Contextuality and Temporal Correlations in Quantum Mechanics
Otfried Guhne University of Siegen


Contextuality as a resource for quantum computation: the trouble with qubits
Juan BermejoVega Freie Universität Berlin

Contextuality and noncontextuality in (qudit) quantum computation
Dan Browne University College London (UCL)  Department of Physics & Astronomy


Contextuality and quantum simulation
Stephen Bartlett University of Sydney

Revisiting quantum incompatibility
Teiko Heinosaari University of Turku


Poster Session Talks
David Schmid University of Gdansk

Group theory and contextuality
William Slofstra Institute for Quantum Computing (IQC)