Format results

48 talksCollection Number C24018
Talk


Tutorial: Causal Inference Meets Quantum Physics
Robert Spekkens Perimeter Institute for Theoretical Physics

Counterfactual and Graphical Frameworks for Causal Modeling
Thomas Richardson University of Washington


Modeling Latent Selection with Structural Causal Models
Leihao Chen University of Amsterdam, Kortewegde Vries Institute for Mathematics

Relating Wigner's Friend Scenarios to Nonclassical Causal Compatibility, Monogamy Relations, and Fine Tuning
Yìlè Yīng Perimeter Institute for Theoretical Physics

Zero Inflation as a Missing Data Problem: a Proxybased Approach
Trung Phung Johns Hopkins Whiting School of Engineering



Celestial Holography Summer School 2024
27 talksCollection Number C24028Talk

Lecture  Celestial Holography Ia
PIRSA:24070002 
Lecture  Canonical a
PIRSA:24070003 
Lecture  Celestial Holography Ib
PIRSA:24070004 
Lecture  Amplitudes a
PIRSA:24070005 
Vision Talk
PIRSA:24070006 
Lecture  Celestial Holography IIa
PIRSA:24070007 
Lecture  Canonical b
PIRSA:24070008 
Lecture  Celestial Holography IIb
PIRSA:24070009


50 Years of Horndeski Gravity: Exploring Modified Gravity
46 talksCollection Number C24019Talk



Horndeski Gravity in Cosmology
Alessandra Silvestri Leiden University

How we rediscovered Horndeski gravity
Cédric Deffayet École Normale Supérieure

Black holes in Horndeski theories
Christos Charmousis IJCLAB CNRS

HiCOLA: Horndeski Goes Nonlinear
Tessa Baker University of Portsmouth

Photon Rings and Shadow Size for General AxiSymmetric and Stationary Integrable spacetimes
Kiana Salehi perimeter institute and university of Waterloo
PIRSA:24070086 
Modified gravity getting to the onepoint clustering statistics
Cora Uhlemann Bielefeld University
PIRSA:24070087


PSI 15th Anniversary Reunion
15 talksCollection Number C24022Talk

Welcome & Happy 15th Anniversary
PIRSA:24060001 

Keynote
Shane Farnsworth Max Planck Institute for Gravitational Physics  Albert Einstein Institute (AEI)
PIRSA:24060003 
Driving Quantum Readiness  An Innovation Perspective
Sonali Mohapatra National Quantum Computing Centre
PIRSA:24060004 
My NonGeodesic Career Trajectory: From Entrepreneurship to Data & AI Consulting
Alexandre VincartEmard Avanade Inc (Montreal)
PIRSA:24060005 
Solid State Detectors for LowMass Dark Matter Searches
Miriam Diamond Arthur B. McDonaldCanadian Astroparticle Physics Research Institute
PIRSA:24060006 

Cohort Project Presentation  "Catching Up": Holography
PIRSA:24060008


Physics of Quantum Information
20 talksCollection Number C24017Talk


Repetition Code Revisited
Matthew Fisher University of California, Santa Barbara


Stability of mixedstate quantum phases via finite Markov length
Shengqi Sang Stanford University

The rise and fall of mixedstate entanglement: measurement, feedback, and decoherence
TsungCheng Lu (Peter) University of Maryland, College Park

Universal bound on topological gap
Liang Fu Massachusetts Institute of Technology (MIT)  Department of Physics

Mapping ground states to stringnets
Daniel Ranard Massachusetts Institute of Technology (MIT)

Sequential Quantum Circuit
Xie Chen California Institute of Technology


Navigating Quantum and AI Career Trajectories: A Beginner’s MiniCourse on Computational Methods and their Applications
7 talksCollection Number C24029Talk

Opening Remarks
PIRSA:24050051 




Recurrent Neural Networks (RNNs)
Megan Schuyler Moss Perimeter Institute for Theoretical Physics



SciComm Collider 2
3 talksCollection Number C24030Talk


Cosmology from Galaxy Surveys
Jessica Muir Perimeter Institute for Theoretical Physics
PIRSA:24050063 
Black holes and gravitational waves
Luis Lehner Perimeter Institute for Theoretical Physics
PIRSA:24050065


Foundations of Quantum Computational Advantage
21 talksCollection Number C24020Talk


Values for compiled XOR nonlocal games
Connor Paddock University of Ottawa

Reliable quantum computational advantages from quantum simulation
Juani Bermejo Vega University of Granada







Higher Categorical Tools for Quantum Phases of Matter
15 talksCollection Number C24016Talk


Analogies between QFT and lattice systems
Anton Kapustin California Institute of Technology (Caltech)  Division of Physics Mathematics & Astronomy

Models of anyons with symmetry: a bulkboundary correspondence
Fiona Burnell University of Minnesota

Twisted Tools for (Untwisted) Quantum Field Theory
Justin Kulp Stony Brook University

Quantum double models and DijkgraafWitten theory with defects
Catherine Meusburger 
Topological sectors in quantum lattice models
Clement Delcamp Institut des Hautes Etudes Scientifiques (IHES)

DouglasReutter 4d TQFT as a generalised orbifold
Vincentas Mulevičius Vilnius University

Weak Hopf symmetric tensor networks
Andras Molnar University of Vienna


Dark Matter, First Light
26 talksCollection Number C24015Talk

Opening Remarks

Katherine Mack Perimeter Institute for Theoretical Physics

Aaron Vincent Queen's University


Dark and visible structures with dissipative dark matter
Sarah Shandera Pennsylvania State University



The First Stars in the Universe as Dark Matter Laboratories
Cosmin Ilie Colgate University

Probing Atomic Dark Matter using Simulated Galactic Subhalo Populations
Caleb Gemmell University of Toronto

Dark matter at high redshifts with JWST
Julian Munoz The University of Texas at Austin

(Dark) Baryogenesis through Asymmetric Reheating in the Mirror Twin Higgs.
Andrija Rasovic University of Toronto


Puzzles in the Quantum Gravity Landscape: viewpoints from different approaches
34 talksCollection Number C23033Talk

Lessons of the Effective Field Theory Treatment of General Relativity
John Donoghue University of Massachusetts Amherst

Positivity Bounds and Effective Fields Theories (A Review)
Andrew Tolley Imperial College London

Holography and its implications for quantum gravity  VIRTUAL
Johanna Erdmenger University of Würzburg


Piecing Together a Flat Hologram
Sabrina Pasterski Perimeter Institute for Theoretical Physics

Open Discussion with today's speakers (Donoghue, Erdmenger, Montero, Pasterski, Tolley)

John Donoghue University of Massachusetts Amherst

Johanna Erdmenger University of Würzburg

Miguel Mlontero IFT Madrid

Sabrina Pasterski Perimeter Institute for Theoretical Physics

Andrew Tolley Imperial College London


Panel Discussion  Strengths and limitations of EFT (Donoghue, Knorr, Montero, Quevedo, Tolley)

John Donoghue University of Massachusetts Amherst

Miguel Mlontero IFT Madrid

Fernando Quevedo University of Cambridge

Carlo Rovelli AixMarseille University

Andrew Tolley Imperial College London


Status, perspective and three challenges in the asymptoticsafety paradigm for quantum gravity  VIRTUAL
Astrid Eichhorn University of Southern Denmark


QPV 2023: Advances in quantum position verification
12 talksCollection Number C23037Talk


QPV: An Overview and Reflections
Harry Buhrman Centrum Wiskunde & Informatica

PopescuRohrlich correlations imply efficient instantaneous nonlocal quantum computation
Anne Broadbent University of Ottawa
PIRSA:23090023 
Nonlocal quantum computation meets quantum gravity
Alex May Perimeter Institute for Theoretical Physics

Quantum ErrorCorrection and Holographic Task
Beni Yoshida Perimeter Institute for Theoretical Physics


Protocols and Implementations of Quantum Position Verification

Eric Chitambar University of Illinois UrbanaChampaign

Paul Kwiat University of Illinois




Causalworlds
48 talksCollection Number C24018Understanding causality is fundamental to science and inspires wideranging applications, yet there are several distinct notions of causation. Recently, there have been important developments on the role of causality in quantum physics, relativistic physics and their interplay. These have unearthed a plethora of fascinating open questions regarding the nature of causation, emergence of spacetime structure and the limits of quantum information processing. At the same time, causal reasoning has become an important tool in machine learning and statistics, with applications ranging from big data to healthcare. This conference brings together experts from different areas of physics working on questions related to causality, as well as selected researchers who bridge the gap between fundamental research and current industrial applications. The aim of the conference is to provide a venue for crosspollination of these ideas through scientific exchange between these communities. The conference will focus on the following facets of causality:
• Quantum and classical causal inference
• Indefinite causal order and quantum reference frames
• Causality in quantum field theory and quantum gravity
• Experiments and applications of causality
:: :: ::
Important dates
Paper submission deadline: 24 May 2024 // 31 May 2024
Paper notification: 3 July 2024 Registration deadline (with application for financial assistance): 18 July 2024
Registration deadline: 28 August 2024
Conference: 1620 September 2024 Update: The submission deadline has been extended to 31st May 2024 for
papers which clearly justify their relevance for the following three
topics: 1) classical causal inference, 2) causality in relativistic physics (including quantum field theory and quantum gravity) and 3) experiments in causality. As we have received a sufficiently high number of submissions on the remaining topics (particularly indefinite causality and quantum causal models), the original deadline of 24th May still holds for submissions in this category. :: :: ::
Call for Abstracts
Prospective speakers can submit a paper for a contributed talk (in person or online) and/or a poster (in person only) via the Call for Abstracts. The Call for Abstracts is now open! Submissions for a talk will automatically be considered for a poster if not accepted for a talk.:: :: ::
Invited Speakers
Jessica Bavaresco (University of Geneva)
Cyril Branciard (CNRS, University Grenoble Alpes)
Rafael Chaves (Federal University of Rio Grande do Norte)
Giulio Chiribella (The University of Hong Kong)
Doreen Fraser (University of Waterloo)
AnneCatherine de la Hamette (IQOQI Vienna)
Ciarán Lee (Spotify)
Tein van der Lugt (University of Oxford)
Joris M. Mooij (University of Amsterdam)
Mio Murao (University of Tokyo)
Alejandro PozasKerstjens (University of Geneva)
Renato Renner (ETH Zürich)
Thomas Richardson (University of Washington)
Sally Shrapnel (The University of Queensland)
Sumati Surya (Raman Research Institute)
Rainer Verch (University of Leipzig)
:: :: ::
Programme Committee
V Vilasini (ETH Zürich & Inria, University Grenoble Alpes) (PC Chair)
Augustin Vanrietvelde (Télécom Paris) (PC Cochair)
Alastair Abbott (Inria, University Grenoble Alpes)
Časlav Brukner (IQOQI Vienna & University of Vienna)
Eric Cavalcanti (Griffith University)
Chris Fewster (University of York)
Lucien Hardy (Perimeter Institute)
Hlér Kristjánsson (Perimeter Institute & IQC & Université de Montréal)
Giulia Rubino (University of Bristol)
Nitica Sakharwade (Università degli Studi di Napoli Federico II)
Robert Spekkens (Perimeter Institute)
Jacopo Surace (Perimeter Institute)
Elie Wolfe (Perimeter Institute)
LinQing Chen (ETH Zürich & IQOQI Vienna)
Hippolyte Dourdent (ICFO Barcelona)
Tamal Guha (University of Hong Kong)
Robin Lorenz (Quantinuum, Oxford)
Maria Papageorgiou (IQOQI Vienna)
Nicola Pinzani (Université libre de Bruxelles)
MarcoTúlio Quintino (Sorbonne Université, Paris)
MarcOlivier Renou (Inria ParisSaclay & CPHT, École polytechnique)
David Schmid (ICTQT, University of Gdańsk)
John Selby (ICTQT, University of Gdańsk)
Akihito Soeda (National Institute of Informatics, Tokyo)
Matthew Wilson (University College London)
:: :: ::
Scientific Organizers
Hlér Kristjánsson (Perimeter Institute & IQC & Université de Montréal) (Chair)
V Vilasini (ETH Zürich & Inria, University Grenoble Alpes)
Robert Spekkens (Perimeter Institute)
Lucien Hardy (Perimeter Institute)
Elie Wolfe (Perimeter Institute)
Jacopo Surace (Perimeter Institute)
Marina Maciel Ansanelli (Perimeter Institute)
Yìlè Yīng (Perimeter Institute)
María Ciudad Alañón (Perimeter Institute)
Daniel Centeno Díaz (Perimeter Institute)
Khushi Gandhi (Perimeter Institute & University of Waterloo):: :: ::
Previous editions:
Causalworlds 2022: The interface between quantum and relativistic causality, foundations and practicalities
Organised at ETH Zürich in 2022. Website: https://causalworlds.ethz.ch/" 
Celestial Holography Summer School 2024
27 talksCollection Number C24028Perimeter Institute is happy to host the inaugural summer school for the Simons Collaboration on Celestial Holography July 2226 in Waterloo, ON. The program will feature lectures on background material relevant for graduate students and postdocs interested in this emerging subfield, paired with vision talks on exciting future research directions.
:: :: ::

50 Years of Horndeski Gravity: Exploring Modified Gravity
46 talksCollection Number C24019Recent years have seen a flood of new data, from gravitational wave observations of merging black holes and neutron stars to precision probes of cosmology, which allow for unprecedented tests of our understanding of gravity. Going handinhand with this, there has been significant recent progress on the theoretical side in terms of formulating modified theories of gravity, and using them to make detailed predictions, including in the nonlinear and dynamical regime, which can be confronted with the observations.
We are excited to announce a landmark conference that plans to delve into the forefront of research on modified theories of gravity and brings together leading experts from different disciplines including observational astrophysicists, numerical relativists, cosmologists and mathematical physicists to explore the present status of modified theories of gravity and envision their future theoretical development and implications for observations.
This conference is also timed to coincide with the 50th anniversary of pioneering work in this area carried out by Gregory Horndeski in the Waterloo Mathematical Physics Community. Hosted jointly by Perimeter Institute and the University of Waterloo, this conference will serve as a forum for researchers from different disciplines to exchange ideas at the cutting
edge of gravitational physics.
Presented by:
Sponsored in part by Gravity Theory Trust
:: :: ::Topics:
• Modified Gravity Theories: Theoretical Framework and Models
• Tests of modified Gravity with Gravitational Waves (LIGO/LISA/PTA)
• Astrophysical/cosmological tests of gravity
• Mathematical structure of Modified gravity
• Observational tests of quantum gravity
• Modified gravity in the early universeConference Structure:
The conference will feature a balanced blend of plenary sessions (invited Speakers), contributed talks, panel discussions and poster presentations for students.
• Keynote presentations by renowned physicists in the field, discussing the impact of Horndeski theories and other modified theories of gravity on cosmology, dark energy, and black hole physics.
• Contributed talks: prioritizing earlycareer researchers
• Panel discussions on emerging research directions, unresolved questions, and potential applications of Horndeski theories.
• Poster sessions for earlycareer researchers and graduate students to showcase their work and receive feedback from senior scientists.:: :: ::
Scientific Organizers:
 Ghazal Geshnizjani (Perimeter Institute, SOC Chair)
 William East (Perimeter Institute)
 Levon Pogosian (Simon Fraser University, Perimeter Institute Affiliate)
 Niayesh Afshordi (Perimeter Institute, U Waterloo, LOC Chair)
 Will Percival (Perimeter Institute, U Waterloo)
 Florian Girelli (U Waterloo, Perimeter Institute Affiliate)
 Jerome Quintin (U Waterloo, Perimeter Institute)
 Alex Krolewski (U Waterloo, Perimeter Institute, CITA)
:: :: ::

PSI 15th Anniversary Reunion
15 talksCollection Number C24022PSIons celebrate 15 years of Perimeter Scholars International with the first ever PSI reunion event!
Join us for 3 days that include:
 3 former PSI Keynote Speakers in Industry
 3 former PSI Speakers in Academia
 A chance to win 1 of 7 Grants of up to 5000 CAD each for a PSI class project to be developed and presented at the reunion (see Call for Projects for details)
 Social events with your cohorts and PSI special guests
 Lots of time to connect with classmates and PSIons, while immersing yourself in Perimeter’s lively research and collaboration environment.
_______________________________________________________
The Perimeter Scholars International (PSI) Master's program is offered in collaboration by Perimeter Institute and the University of Waterloo.

Physics of Quantum Information
20 talksCollection Number C24017The dialogue between quantum information and quantum matter has fostered notable progress in both fields. Quantum information science has revolutionized our understanding of the structure of quantum manybody systems and novel forms of outofequilibrium quantum dynamics. The advances of quantum matter have provided novel paradigms and platforms for quantum information processing.
This conference aims to bring together leading experts at the intersections of quantum information and quantum matter. Key topics include: (i) quantum error correction, (ii) quantum dynamics, and (iii) quantum simulation.Organizers:
Timothy Hsieh, Perimeter Institute
Beni Yoshida, Perimeter Institute
Zhi Li, Perimeter Institute
TsungCheng Lu, Perimeter Institute
Meenu Kumari, National Research Council Canada:: :: ::

Navigating Quantum and AI Career Trajectories: A Beginner’s MiniCourse on Computational Methods and their Applications
7 talksCollection Number C24029The dynamic field of quantum physics and artificial intelligence is expanding across both academic and industrial landscapes. This minicourse offers an introduction to computational techniques currently utilized in the quantum sector, highlighting nonacademic career paths for individuals interested in quantum physics and machine learning. The program features two lecture series: one on generative modeling  covering topics (such as restricted Boltzmann machines, recurrent neural networks, and transformers)  and the other on quantum machine learning algorithms. Participants will also benefit from practical coding tutorials, networking opportunities, and related events about the landscape of Quantum and AI.
Land Acknowledgement
In the spirit of understanding and learning from what has come before, Perimeter Institute respectfully acknowledges that we are located on the traditional territory of the Attawandaron, Anishnaabeg, and Haudenosaunee peoples.
Perimeter is situated on the Haldimand Tract, land promised to Six Nations, which includes six miles on each side of the Grand River. As settlers, we thank all the generations of people who have taken care of this land for thousands of years. We are connected to our collective commitment to make the promise and the challenge of Truth and Reconciliation real in our communities. 
SciComm Collider 2
3 talksCollection Number C24030The second annual SciComm Collider workshop will bring together a group of the most innovative science communicators helping to connect the public with topics in physics and astronomy for a threeday workshop aimed at sharing ideas, creating new collaborations, and exploring ways to more effectively engage the public with the most exciting ideas in science. The workshop will consist of short seminars, interactive sessions, and opportunities to brainstorm new ideas with fellow communicators and creators, as well as venues for interaction between invited science communicators and Perimeter outreach/communications team members and researchers.

Foundations of Quantum Computational Advantage
21 talksCollection Number C24020The workshop marks the halfway point of the similarly named (FoQaCiA, pronounced "focaccia") collaboration between researchers in Canada and Europe, funded as part of a flagship partnership between NSERC and Horizon Europe.
https://www.foqacia.org/
The goal of FoQaCiA is to develop new foundational approaches to shed light on the relative computational power of quantum devices and classical computers, helping to find the "line in the sand" separating tasks admitting a quantum speedup from those that are classically simulable.
The workshop will focus on the four central interrelated themes of the project:
1. Quantum contextuality, nonclassicality, and quantum advantage
2. The complexity of classical simulation of quantum computation
3. The arithmetic of quantum circuits
4. The efficiency of faulttolerant quantum computation
Our view is that the future success of quantum computing critically depends on advances at the most fundamental level, and that largescale investments in quantum implementations will only pay off if they can draw on additional foundational insights and ideas:: :: ::
Scientific Organizers:
Rui Soares Barbosa (INL  International Iberian Nanotechnology Laboratory)
Anne Broadbent (University of Ottawa)
Ernesto Galvão (INL  International Iberian Nanotechnology Laboratory)
Rob Spekkens (Perimeter Institute)
Jon Yard (Perimeter Institute):: :: ::
FoQaCiA is funded by:

Higher Categorical Tools for Quantum Phases of Matter
15 talksCollection Number C24016Quantum phases have become a staple of modern physics, thanks to their appearance in fields as diverse as condensed matter physics, quantum field theory, quantum information processing, and topology. The description of quantum phases of matter requires novel mathematical tools that lie beyond the old symmetry breaking perspective on phases. Techniques from topological field theory, homotopy theory, and (higher) category theory show great potential for advancing our understanding of the characterization and classification of quantum phases. The goal of this workshop is to bring together experts from across mathematics and physics to discuss recent breakthroughs in these mathematical tools and their application to physical problems.
Scientific Organizers
Lukas Mueller
Alex Turzillo
Davide Gaiotto
Sponsored in part by the Simons Collaboration on Global Categorical Symmetries

Dark Matter, First Light
26 talksCollection Number C24015New observational programs and techniques are opening a window to the first galaxies in the universe and bringing surprises along the way. In this workshop, we'll explore how dark matter phenomenology may have impacted the first stars and galaxies, focusing on how improved modeling and simulations can allow us to use new and upcoming highredshift data to gain insight into dark matter's fundamental nature.
Sponsored in part by:

Puzzles in the Quantum Gravity Landscape: viewpoints from different approaches
34 talksCollection Number C23033Unraveling the quantum nature of gravity is one of the most pressing problems of theoretical physics. Several ideas have been put forward and resulted in a number of theories of quantum gravity. While these theories have explored different facets of the “quantum gravity landscape”, all viable approaches should ultimately make contact with observations, and answer exciting questions in cosmology and blackhole physics.
Sharing knowledge, exchanging ideas, and building a dictionary between different theories are crucial steps toward answering these questions, efficiently contrasting different theories, and ultimately reaching a deeper understanding of our Universe.
This conference will contribute to these goals by bringing together leading experts in different approaches to quantum gravity, gravitational effective field theory, blackhole physics, and cosmology. We will focus on specific puzzles in quantum gravity and their resolutions within different approaches. The conference will be highly interactive, with plenty of time to discuss common problems, understand the big picture, and develop novel connections between fields.Registration: Registration is now open, and both inperson and virtual participation is welcome. Online participants will be able to interact on an equal footing in question sessions and discussions. Inperson attendance is limited and will be approved on a firstcome, firstserved basis. Talks are by invitation only, but inperson participants are encouraged to apply to present a poster.
Spam warning: There is an increasing number of scam agencies reaching out to conference speakers and attendees. Perimeter Institute does not use thirdparty agencies. We advise speakers and attendees to ignore emails and not to provide any details to anyone who is not from Perimeter Institute.
Confirmed Speakers and Panelists:
 Abhay Ashtekar (Penn State University)
 Robert Brandenberger (McGill University)
 Luca Buoninfante (Nordita)
 Xavier Calmet (University of Sussex)
 Francesco di Filippo (Kyoto University)
 Bianca Dittrich (Perimeter Institute)
 John Donoghue (University of Massachusetts)
 Astrid Eichhorn (CP3origins)
 Johanna Erdmenger (Würzburg University)
 Ghazal Geshnizjani (Perimeter Institute)
 Ruth Gregory (King's College)
 Lavinia Heisenberg (Heidelberg University)
 Bob Holdom (University of Toronto)
 Benjamin Knorr (Nordita)
 Renate Loll (Radboud University Nijmegen)
 Miguel Montero (IFT Madrid)
 Rob Myers (Perimeter Institute)
 Sabrina Pasterski (Perimeter Institute)
 Fernando Quevedo (Cambridge University)
 Lisa Randall (Harvard University)
 Kasia Rejzner (York University)
 Mairi Sakellariadou (King's College)
 Lee Smolin (Perimeter Institute)
 Kellogg Stelle (Imperial College)
 Sumati Surya (Raman Research Institute)
 Andrew Tolley (Imperial College)
 Neil Turok (University of Edinburgh)
 Pedro Vieira (Perimeter Institute)
 Yasaman Yazdi (Imperial College)
Territorial Land Acknowledgement
Perimeter Institute acknowledges that it is situated on the traditional territory of the Anishinaabe, Haudenosaunee, and Neutral peoples.
Perimeter Institute is located on the Haldimand Tract. After the American Revolution, the tract was granted by the British to the Six Nations of the Grand River and the Mississaugas of the Credit First Nation as compensation for their role in the war and for the loss of their traditional lands in upstate New York. Of the 950,000 acres granted to the Haudenosaunee, less than 5 percent remains Six Nations land. Only 6,100 acres remain Mississaugas of the Credit land.
We thank the Anishinaabe, Haudenosaunee, and Neutral peoples for hosting us on their land.

QPV 2023: Advances in quantum position verification
12 talksCollection Number C23037Quantum position verification (QPV) schemes use the properties of quantum information and the relativistic signalling bound to verify the location of an object (sometimes called a “tag”) to distant observers in an environment that may contain wouldbe spoofers. The guarantee is based on the assumptions of the underlying security model; various theoretically and practically interesting security models have been proposed. The area is attracting increasing interest, with new theoretical developments in security analyses, emerging experimental studies of QPV systems, and recently discovered surprising and intriguing connections to topics in quantum gravity. A workshop on QPV will be held at the Perimeter Institute for Theoretical Physics.
The workshop will cover topics related to all aspects of QPV, including, but not limited to:
 Theoretical developments related to the security of QPV schemes, including development or refinement of security models, proofs of security within given models, tradeoffs between security and efficiency, and Experimental studies of QPV and theoretical work aimed at developing practical QPV schemes.
 QPV’s relationship to other cryptographic tasks and primitives.
 QPV’s relationship to holography and quantum gravity.
Territorial Land Acknowledgement
Perimeter Institute acknowledges that it is situated on the traditional territory of the Anishinaabe, Haudenosaunee, and Neutral peoples.
Perimeter Institute is located on the Haldimand Tract. After the American Revolution, the tract was granted by the British to the Six Nations of the Grand River and the Mississaugas of the Credit First Nation as compensation for their role in the war and for the loss of their traditional lands in upstate New York. Of the 950,000 acres granted to the Haudenosaunee, less than 5 percent remains Six Nations land. Only 6,100 acres remain Mississaugas of the Credit land.
We thank the Anishinaabe, Haudenosaunee, and Neutral peoples for hosting us on their land.