Short-depth algorithms are crucial for reducing computational error on near-term quantum computers, for which decoherence and gate infidelity remain important issues. Here we present a machine-learning inspired approach for discovering such algorithms. We apply our method to a ubiquitous primitive: computing the overlap Tr(rho*sigma) between two quantum states rho and sigma. The standard algorithm for this task, known as the Swap Test, is used in many applications such as quantum support vector machines, and, when specialized to rho=sigma, quantifies the Renyi entanglement. Here, we find algorithms that have shorter depths than the Swap Test, including one that has constant depth (independent of problem size). Furthermore, we apply our approach to the hardware-specific connectivity and gate alphabets used by Rigetti's and IBM's quantum computers and demonstrate that the shorter algorithms that we derive significantly reduce the error - compared to the Swap Test - on these computers.
Time series data contains useful information on the phase of a system. Here we propose the use of recurrent neural networks (LSTM) to learn and extract such information in order to classify phases and locate phase boundaries. We demonstrate this on a many-body localized model, and attempt to interpret the learned behavior by looking at individual LSTM cells. We also discuss the validity of the learned model and investigate its limits.