The workshop marks the halfway point of the similarly named (FoQaCiA, pronounced "focaccia") collaboration between researchers in Canada and Europe, funded as part of a flagship partnership between NSERC and Horizon Europe.
https://www.foqacia.org/
The goal of FoQaCiA is to develop new foundational approaches to shed light on the relative computational power of quantum devices and classical computers, helping to find the "line in the sand" separating tasks admitting a quantum speedup from those that are classically simulable.
The workshop will focus on the four central interrelated themes of the project:
1. Quantum contextuality, nonclassicality, and quantum advantage
2. The complexity of classical simulation of quantum computation
3. The arithmetic of quantum circuits
4. The efficiency of faulttolerant quantum computation
Our view is that the future success of quantum computing critically depends on advances at the most fundamental level, and that largescale investments in quantum implementations will only pay off if they can draw on additional foundational insights and ideas
:: :: ::
Scientific Organizers:
Rui Soares Barbosa (INL  International Iberian Nanotechnology Laboratory)
Anne Broadbent (University of Ottawa)
Ernesto Galvão (INL  International Iberian Nanotechnology Laboratory)
Rob Spekkens (Perimeter Institute)
Jon Yard (Perimeter Institute)
:: :: ::
FoQaCiA is funded by:
Format results


Values for compiled XOR nonlocal games
University of Ottawa 
Reliable quantum computational advantages from quantum simulation
University of Granada 
Cohomological description of contextual measurementbased quantum computations — the temporally ordered case
Leibniz University Hannover 




Programming Clifford Unitaries with Symplectic Types
Intel Corporation 
Unclonability and How it links quantum foundations to quantum applications
University of EdinburghPIRSA:24050025 

Stabilizer operators and BarnesWall lattices
Microsoft Corporation