Cosmologists at Perimeter Institute seek to help pin down the constituents and history of our universe, and the rules governing its origin and evolution. Many of the most interesting clues about physics beyond the standard model (e.g., dark matter, dark energy, the matter/anti-matter asymmetry, and the spectrum of primordial density perturbations], come from cosmological observations, and cosmological observations are often the best way to test or constrain a proposed modification of the laws of nature, since such observations can probe length scales, time scales, and energy scales that are beyond the reach of terrestrial laboratories.
I will discuss the possibility that a 'Wilson line' degree of freedom can play the role of an inflaton in a warped flux compactification, in the context of the DBI inflationary scenario. I will show how warped DBI Wilson line inflation offers an attractive alternative to ordinary (position field) DBI inflation, inasmuch as observational and theoretical constraints get considerably relaxed. Thus, besides the large non-Gaussianities produced in DBI scenarios, Wilson lines allow for an observable amount of gravitational waves, within consistent approximations.
We have only scratched the surface of the potential for using large-scale structure (LSS) as a probe of fundamental physics/cosmology, i.e., quantitatively, we have only measured a small fraction of a percent of the accessible LSS information. Future measurements will probe dark energy, inflation, dark matter properties, neutrino masses, modifications of gravity, etc. with unprecedented precision. I will discuss three probes of LSS: the traditional galaxy redshift survey, the Lyman-alpha forest (LyaF), and the new idea of 21 cm intensity mapping; and two future experiments that cover these probes: SDSS-III/BOSS (galaxies and LyaF) and the proposed CHIME (21 cm). I will discuss recent theoretical/phenomenological developments that promise to greatly enhance the power of LSS surveys, related to the connection between bias, redshift-space distortions, and non-Gaussianity.
Braneworlds are a fascinating way of hiding extra dimensions by confining ourselves to live on a brane. One particular model (Randall-Sundrum) has a link to string theory via living in anti de Sitter space. I'll describe how the ads/cft correspondence has been used to claim that a braneworld black hole would tell us how Hawking radiation back reacts on spacetime, thus solving one of the outstanding problems of quantum gravity - the ultimate fate of an evaporating black hole. I'll review evidence for this conjecture, ending with some recent work that shows it may be problematic.
We examine the embedding of dark energy energy models based upon supergravity. We analyse the structure of the soft supersymmetry breaking terms in presence of dark energy. We pay attention to their dependence on the quintessence field and to the electroweak symmetry breaking, ie the pattern of fermions masses at low energy within the MSSM coupled to quintessence. In particular, we compute explicitly how the fermion masses generated through the Higgs mechanism depend on the quintessence field for a general model of quintessence. Fifth force and equivalence principle violations are potentially present as the vev of the Higgs bosons become quintessence field dependent. We emphasize that equivalence principle violations are a generic consequence of the fact that, in the MSSM, the fermions couple diffeently to the two Higgs doublets. Finally, we also discuss how the scaling of the cold dark and baryonic matter energy density is modified.
Cosmology, in particular applying the physics of elementary particles to the extremely hot and violent conditions of the early universe, and exploring deep questions about the big bang, the fate of our universe, and the hope for intelligent life (here or elsewhere)
Big Bang cosmology, inflationary growth of the universe, seeds for the formation of galaxies and large-scale structure, dark energy and dark matter, and also “quasicrystals” - a new phase of solid matter with impossible symmetries.
The growth of matter perturbations in the presence of dark energy with small fluctuations depends on the speed of sound of these fluctuations and the comoving scale. The growth index can differ from the value that it takes in the limit of no dark energy perturbations by an amount comparable to the accuracy of future observations. This may contribute to a better characterization of the dark energy properties.
If primordial black holes are produced at the end of inflation, they should quickly decay via Hawking radiation. For the most part the radiation signature of these black holes will be wiped out, as the universe is still radiation dominated when they disappear. The exception to this would be a stochastic background of gravity waves. I present an algorithm by which the spectrum of radiation can be calculated, and discuss the dependence on the initial energy density and the number of relativistic species.
I will discuss the various sources of non-Gaussianity (NG) in a class of multi-field models of inflation. I will show that there is both an intrinsic and a local contribution to the NG although they both have the same shape. It is also possible in this class of models that the dominant part to the 3-pt function comes from loop diagrams. These models are of the hybrid type and while they occur naturally in string theory, the conditions for the NG to be important are not generic.
There is an ongoing debate in the literature concerning the effects of averaging out inhomogeneities (``backreaction\'\') in cosmology. In particular, it has been suggested that the backreaction can play a significant role at late times, and that the standard perturbed FLRW framework is no longer a good approximation during structure formation, when the density contrast becomes nonlinear. After a brief introduction to the problem, I will show using Zalaletdinov\'s covariantaveraging scheme that as long as the metric of the universe can be described by the perturbed FLRW form, the corrections due to averaging remain negligibly small. Further, using a fully relativistic and reasonably generic model of pressureless spherical collapse, I will show that as long as matter velocities remain small (which is true in this model even at late times), the perturbed FLRW form of the metric can be explicitly recovered. Together with the observation that real peculiar velocities are in fact nonrelativistic, these results imply that the backreaction remains small even during nonlinear structure formation.
Non-Gaussianity is a powerful observable that may reveal important properties of the fundamental physics of inflation, with qualitative and quantitative features of higher order correlation functions distinguishing between models. Here I will discuss the structure of correlation functions in the most general single field inflation model and explain why this information is important for making use of observations from the CMB and large scale structure.