Cosmologists at Perimeter Institute seek to help pin down the constituents and history of our universe, and the rules governing its origin and evolution. Many of the most interesting clues about physics beyond the standard model (e.g., dark matter, dark energy, the matter/anti-matter asymmetry, and the spectrum of primordial density perturbations], come from cosmological observations, and cosmological observations are often the best way to test or constrain a proposed modification of the laws of nature, since such observations can probe length scales, time scales, and energy scales that are beyond the reach of terrestrial laboratories.
I will present the class of effective field theories of dark energy, which aim to reproduce a dark energy-like phenomenology by modifying general relativity with the addition of a scalar graviton. I will review how non-linearities can "screen" local scales from scalar effects, therefore allowing these theories to pass existing solar-system experimental tests. I will then present fully relativistic simulations of gravitational wave generation in these theories in 1+1 dimensions (stellar oscillations and collapse) and 3+1 dimensions (binary neutron stars). I will show that screening tends to suppress the (subdominant) dipole scalar emission in binary neutron star systems, but it fails to quench monopole scalar emission in gravitational collapse, and quadrupole scalar emission in binaries. This opens the way to the exciting possibility of testing dark energy with gravitational wave data.
I will show how to derive libraries of semi-analytic gravitational waveforms for coalescing “hairy” black hole binaries, focusing on the example of Einstein-scalar-Gauss-Bonnet gravity (ESGB). To do so, I will start from the state-of-the-art, effective-one-body waveform model “SEOBNRv5PHM” in general relativity, and deform it with ESGB corrections to infer inspiral-merger-ringdown waveform estimates.
In recent years, gravitational wave observations of compact objects have provided new opportunities to test our understanding of gravity in the strong-field, highly dynamical regime. To perform model-dependent tests of General Relativity with these observations, one needs accurate inspiral-merger-ringdown waveforms in alternative theories of gravity. In this talk, we will discuss the nonlinear dynamics of compact object mergers in a class of modified theories of gravity, as well as the challenges in numerically obtaining those solutions. The theory we focus on is Einstein-scalar-Gauss-Bonnet gravity, which is a representative example of a Horndeski gravity theory and is interesting because it admits scalar hairy black hole solutions.
Black holes in Horndeski theories of gravity are a perfect playground for exploring possible deviations from General Relativity in a theory-specific manner and studying their astrophysical manifestation. I will review the recent advances in constructing stationary hairy black hole models in Gauss-Bonnet theories. Special attention will be paid to their nonlinear dynamics when isolated or put in a binary, and the resulting astrophysical implications. The potential loss of hyperbolicity will also be discussed.
Scalar-tensor theories with a screening mechanism can serve as a viable model of cosmic acceleration, while still passing existing local tests of gravity. The validity of different screening mechanisms, such as kinetic screening (or k-mouflage) has been studied extensively in static and weak field regimes. However, only recently have works started to focus on determining whether these would work as expected near extremely compact objects. In this talk I will discuss some recent efforts to characterise kinetic screening mechanisms in these highly dynamical and non-linear regimes using numerical relativity in the case of a single oscillating neutron star, as well as how this picture may change for a binary neutron star configuration in a quasi-equilibrium state.
Simulating non-linear scales of structure formation is essential to make use of frontier data from Stage IV galaxy surveys. Performing these simulations in modified gravity theories introduces additional challenges, and further forces us to make choices about which theories we deem ‘worth’ the computational investment. Horndeski Gravity is very helpful in this regard, as it encompasses a large swathe of models of major interest.
I’ll introduce Hi-COLA, a software suite which simulates large-scale structure formation in the class of luminal Horndeski theories. Hi-COLA was designed to be:
i) flexible — it avoids hard-coded models and instead receives a user-specified Lagrangian;
ii) consistent — the background expansion history, linear growth and nonlinear screening are solved consistently with one another;
iii) efficient — using the COLA method, large sets of simulations can be generated at low cost.
I’ll explain how Hi-COLA can be used to make robust predictions for scalar-tensor theories on nonlinear scales. If time permits, we’ll also dip a toe into constraining the Horndeski framework with gravitational waves.
We will discuss black hole solutions in Horndeski and beyond Horndeski theories. Starting from the no hair paradigm in GR we will elaborate on one of the first black hole solutions with secondary hair. We will then start by introducing stealth solutions, in other words GR metrics endowed with a non trivial scalar field, their regularity properties, shortcomings etc. We will then go on to construct black holes with primary scalar hair which can be regular black holes and modify usual GR static metrics. We will discuss their properties and the status of explicit stationary metrics to conclude.
In this talk I will review how Horndeski gravity made its way in Cosmology and why it became a very popular framework for tests of gravity on cosmological scales.