Cosmologists at Perimeter Institute seek to help pin down the constituents and history of our universe, and the rules governing its origin and evolution. Many of the most interesting clues about physics beyond the standard model (e.g., dark matter, dark energy, the matter/anti-matter asymmetry, and the spectrum of primordial density perturbations], come from cosmological observations, and cosmological observations are often the best way to test or constrain a proposed modification of the laws of nature, since such observations can probe length scales, time scales, and energy scales that are beyond the reach of terrestrial laboratories.
I will explain how cosmological dynamics emerge from the hydrodynamics of isotropic group field theory condensate states in the Gross-Pitaevskii approximation. The correct Friedmann equations are recovered in the classical limit for some choices of the parameters in the action for the group field theory, and quantum gravity corrections arise in the high-curvature regime causing a bounce which generically resolves the big-bang and big-crunch singularities.
I discuss potentially observable signatures of scalar and tensor decaying modes, which do not exist in inflation, and could be a probe of a bouncing universe.
There is a huge body of work in Loop Quantum Cosmology comprising of several thousand journal articles. I will provide an overview of conclusions, focusing on the difficult conceptual and mathematical issues that accompany the notion of a bounce and opening the way for phenomenological implications that will be discussed by Ivan Agullo.
The Lambda Cold Dark Matter framework successfully accounts for observational constraints on large (> 1 Mpc) scales, from the clustering of galaxies to the angular dependence of the Cosmic Microwave Background to the structure and matter content of galaxy clusters. On the scale of individual galaxies and, in particular, of dwarf systems much fainter than the Milky Way, a number of apparent conflicts with LCDM expectations have been reported. These have prompted the consideration of a number of radical modifications to LCDM, such as the possibility that dark matter might be "self-interacting", or that it might not be “cold”. I will review the status of these alleged problems and will report on recent work that reevaluates the observational evidence and reexamines the role of systematic uncertainties in the comparison between observation and model predictions. In particular, I will propose a possible resolution to the “cusp vs core” problem that requires no cores; an explanation for the mass discrepancy-acceleration relation that requires no changes to LCDM halos; and a plausible tidal origin for the enigmatic population of galaxies inhabiting “extremely cold” dark matter halos, such as the recently discovered Crater 2 satellite.
The first phase of stellar evolution in the history of the Universe may be Dark Stars (DS), powered by dark matter heating rather than by nuclear fusion. Weakly Interacting Massive Particles, which may be their own antipartners, collect inside the first stars and annihilate to produce a heat source that can power the stars. A new stellar phase results, a Dark Star, powered by dark matter annihilation as long as there is dark matter fuel, with lifetimes from millions to billions of years. Dark stars are very bright diffuse puffy objects during the DS phase, and grow to be very massive. In fact, we have found they can to grow to 10^5-10^7 solar masses with luminosities 10^9-10^11 solar luminosities. Such objects will be observable with James Webb Space Telescope (the sequel to HST). Once the dark matter fuel is exhausted, the DS becomes a heavy main sequence star; these stars eventually collapse to form massive black holes that may provide seeds for supermassive black holes observed at early times as well as in galaxies today.
Fast Radio Bursts are mysterious radio flashes that appear to have extragalactic origin. The inferred isotropic brightness temperature for these events can exceed 10^34 K. Discovered in 2006, only about 25 have been reported to date. I will give a short summary of the these events then explain how a new generation of dense radio arrays will dramatically improve our understanding of these burst. The HIRAX telescope in South Africa will detect about 10 FRBs per day and will localize these events with sub-arcsecond precision. A next generation of packed array could detect one every minute, allowing tomography of the ionized universe.
Gravitational lensing is one of the primary investigation tools of all current and future wide field surveys. In this talk I will review its current status (with the Kilo Degree Survey (KiDS)) and show what unique cosmological information it gives us. Lensing is not limited to a, low redshift, dark universe probe, it can also be used as a tool to probe baryons and nicely work in synergy with baryonic probes (e.g. CMB, Xray, tSZ, HI). I will show some of the work in progress to help constraining Active Galactic Nuclei feedback