Modular Koszul duality for Kac–Moody groups
APA
Makisumi, S. (2017). Modular Koszul duality for Kac–Moody groups. Perimeter Institute. https://pirsa.org/17110064
MLA
Makisumi, Shotaro. Modular Koszul duality for Kac–Moody groups. Perimeter Institute, Nov. 27, 2017, https://pirsa.org/17110064
BibTex
@misc{ pirsa_PIRSA:17110064, doi = {10.48660/17110064}, url = {https://pirsa.org/17110064}, author = {Makisumi, Shotaro}, keywords = {Mathematical physics}, language = {en}, title = {Modular Koszul duality for Kac{\textendash}Moody groups}, publisher = {Perimeter Institute}, year = {2017}, month = {nov}, note = {PIRSA:17110064 see, \url{https://pirsa.org}} }
The Hecke category is a certain monoidal category of constructible sheaves on a flag variety that categorifies the Hecke algebra and plays an important role in geometric representation theory. In this talk, I will discuss a monoidal Koszul duality relating the Hecke category of Langlands-dual (Kac–Moody) flag varieties, categorifying a certain involution of the Hecke algebra. In particular, I will try to explain why one needs to introduce a monoidal category of "free-monodromic tilting sheaves" to formulate this duality. (Joint with P.N. Achar, S. Riche, and G. Williamson.)