PIRSA:23100070

Relative orientations and the cyclic Deligne conjecture

APA

Rozenblyum, N. (2023). Relative orientations and the cyclic Deligne conjecture. Perimeter Institute. https://pirsa.org/23100070

MLA

Rozenblyum, Nikita. Relative orientations and the cyclic Deligne conjecture. Perimeter Institute, Oct. 03, 2023, https://pirsa.org/23100070

BibTex

          @misc{ pirsa_PIRSA:23100070,
            doi = {10.48660/23100070},
            url = {https://pirsa.org/23100070},
            author = {Rozenblyum, Nikita},
            keywords = {Mathematical physics},
            language = {en},
            title = {Relative orientations and the cyclic Deligne conjecture},
            publisher = {Perimeter Institute},
            year = {2023},
            month = {oct},
            note = {PIRSA:23100070 see, \url{https://pirsa.org}}
          }
          

Nick Rozenblyum

University of Chicago

Talk number
PIRSA:23100070
Abstract

A consequence of the works of Costello and Lurie is that the Hochschild chain complex of a Calabi-Yau category admit the structure of a framed E_2 algebra (the genus zero operations). I will describe a new algebraic point of view on these operations which admits generalizations to the setting of relative Calabi-Yau structures, which do not seem to fit into the framework of TQFTs. In particular, we obtain a generalization of string topology to manifolds with boundary, as well as interesting operations on Hochschild homology of Fano varieties. Time permitting, I will explain some applications to quiver varieties. This is joint work with Christopher Brav.

---

Zoom link: https://pitp.zoom.us/j/97363589637?pwd=T25YS0ZYQlBSWm5maXhQTklpSm50UT09