Format results
-
Phenomenological thermodynamics with multiple quantities of interest
Lidia del Rio University of Zurich
-
Toys can't play: physical agents in Spekkens' theory
Lidia del Rio University of Zurich
-
Quantum nonlocality without entanglement via indefinite causal order
Ravi Kunjwal Funds for Scientific Research - FNRS
-
-
Quantum Reference Frames for Superpositions of Spacetimes
Anne-Catherine de la Hamette University of Vienna
-
Quantum networks self-test all entangled states
Ivan Supic The French National Centre for Scientific Research
-
Causal Operations in Quantum Field Theory
Ian Jubb Dublin Institute For Advanced Studies
-
Contextuality, Fine-tuning and Teleological Explanation
Emily Adlam Chapman University
-
-
Applied QBism and its Potential
John Debrota University of New Mexico
-
-
-
Phenomenological thermodynamics with multiple quantities of interest
Lidia del Rio University of Zurich
Joint work (in progress) with Ladina Hausmann, Nuriya Nurgalieva and Renato Renner
We can classify contemporary approaches to thermodynamics in roughly four camps:
(1) Top-down microscopic approaches. These are for example resource-theoretical approaches to quantum thermodynamics: they have a microscopic model of states and systems, and which microscopic restrictions implement macroscopic properties. For instance, in the resource theory of quantum thermodynamics, states are represented by density operators, thermal states in particular have a specific micro-canonical form, and constraints like energy preservation are enforced by forcing quantum transformations to commute with a global Hamiltonian. These approaches success at deriving thermodynamic laws in general settings that satisfy the microscopic model (like non-relativistic quantum systems.
(2) Bottom-up microscopic approaches. These also start from a microscopic model, but rather than looking for universal restrictions, they search for explicit thermodynamics protocols: this is the case of recent proposals for quantum work extraction or nano quantum heat engines.
(3) Top-down phenomenological approaches. These try to derive thermodynamic laws from first principles independently of a microscopic model. In principle the results derived in this framework can be applied to a wider variety of explicit systems, and the challenge is then to find the right implementations. The first derivations of thermodynamics were naturally phenomenological, and some modern information-inspired derivations follow this approach.
(4) Bottom-up phenomenological approaches. These approaches try to find explicit thermodynamic protocols independently of the microscopic model, based only on operational properties of the systems at hand. It was the case for Carnot's original engines and more recently for some approaches to deriving black hole thermodynamics, or thermodynamics of new materials; some experimental results also fit in this camp.
In this work we generalize top-down phenomenological approaches to the case of multiple conserved quantities. Note that multiple conserved quantities have been studied in top-down and bottom-up microscopic approaches to quantum thermodynamics. We argue that our framework is more general, in that it can be applied to systems for which we don't have an explicit microscopic model; in particular we will apply the results of this framework to black hole thermodynamics. Moreover, having a phenomenological axiomatic approach to thermodynamics allows us to identify which properties are specific to a microscopic model like quantum physics, and which hold in any physical theory: our results can be applied to study the thermodynamics of generalized process theories, and other generalizations and foils of quantum mechanics. This generalization makes us reconsider the second law of thermodynamics, adapting for an exchange of different conserved quantities, for example, energy and angular momentum, or energy and spin. Our guiding principle here is to use information as a universal token of exchange to convert between different quantities via Landauer's principle.
Zoom Link: https://pitp.zoom.us/j/96001094153?pwd=YTArTGpPdEJ1NFBMcnFqV1dIRTVyZz09
-
Toys can't play: physical agents in Spekkens' theory
Lidia del Rio University of Zurich
Information is physical, and for a physical theory to be universal, it
should model observers as physical systems, with concrete memories where
they store the information acquired through experiments and reasoning.
Here we address these issues in Spekkens' toy theory, a non-contextual
epistemically restricted model that partially mimics the behaviour of
quantum mechanics. We propose a way to model physical implementations of
agents, memories, measurements, conditional actions and information
processing. We find that the actions of toy agents are severely limited:
although there are non-orthogonal states in the theory, there is no way
for physical agents to consciously prepare them. Their memories are also
constrained: agents cannot forget in which of two arbitrary states a
system is. Finally, we formalize the process of making inferences about
other agents' experiments and model multi-agent experiments like
Wigner's friend. Unlike quantum theory or box world, in the toy theory
there are no inconsistencies when physical agents reason about each
other's knowledge.Zoom Link: TBD
-
Quantum nonlocality without entanglement via indefinite causal order
Ravi Kunjwal Funds for Scientific Research - FNRS
I will discuss a recent result on an intimate link between two a priori distinct phenomena: quantum nonlocality without entanglement and classically-achievable indefinite causal order. The first phenomenon refers to a multipartite scenario where the parties are unable to perfectly discriminate orthogonal product states drawn from an ensemble of quantum states by using local operations and classical communication (LOCC). The second (hypothetical) phenomenon refers to a multipartite scenario where the parties can communicate classically but the local operations of each party are in the future of the other parties, i.e., they cannot be ordered causally. Specifically, I will show how three separated parties with access to a classical process exhibiting indefinite causal order---the AF/BW process---can perfectly discriminate the states in an ensemble---the SHIFT ensemble---that exhibits quantum nonlocality without entanglement. Time permitting, I will discuss the generalization of this result beyond the tripartite case and comment on its connection with separable operations that are outside LOCC.
Based on joint work with Ämin Baumeler, arXiv:2202.00440.
Zoom Link: https://pitp.zoom.us/j/93727212623?pwd=cjVRL3cvMmhicDRic3lXRFBkNi9xZz09
-
Atomic clock interferometers: a test for a quantum generalization of Einstein’s Equivalence Principle and a quantum sensing analysis
Carlo Cepollaro Austrian Academy of Sciences
It is unknown how the Einstein Equivalence Principle (EEP) should be modified to account for quantum features. A possibility introduced in arXiv:2012.13754 is that the EEP holds in a generalized form for particles having an arbitrary quantum state. The core of this proposal is the ability to transform to a Quantum Reference Frame (QRF) associated to an arbitrary quantum state of a physical system, in which the metric is locally inertial. I will show that this extended EEP, initially formulated in terms of the local expression of the metric field in a QRF, can be verified in an interferometric setup via tests on the proper time of entangled clocks (arXiv:2112.03303). Moreover, the same setup can be analyzed with quantum sensing techniques (arXiv:2204.03006): I will talk about how gravitational time dilation may be used as a resource in quantum information theory, showing that it may enhance the precision in estimating the gravitational acceleration for long interferometric times.
-
Quantum Reference Frames for Superpositions of Spacetimes
Anne-Catherine de la Hamette University of Vienna
The current theories of quantum physics and general relativity on their own do not allow us to study situations in which spacetime is in a quantum superposition. In this talk, I propose a general strategy to determine the dynamics of objects on an indefinite spacetime metric, using an extended notion of quantum reference frame transformations. First, we study the situation of the gravitational source mass being in a spatial superposition state and, using a generalized principle of covariance, show how to transform to a frame in which the standard theories of GR and QFT allow to determine the dynamics. In the second part, we consider superpositions of conformally equivalent metrics inhabited by a massive quantized Klein-Gordon field. By requiring invariance of the KG equation under quantum conformal transformations, we find that the superposition is transferred to the quantum field in the form of an effective, spacetime dependent mass term. Overall, the proposed strategy allows to construct the respective explicit quantum frame change operators, and to study physical phenomena such as time dilation and cosmological particle production in different quantum frames.
Zoom Link: https://pitp.zoom.us/j/96903859307?pwd=aEtLUy9tME5GL25nTjBVNXVmb2N3Zz09
-
Quantum networks self-test all entangled states
Ivan Supic The French National Centre for Scientific Research
Certifying quantum properties with minimal assumptions is a fundamental problem in quantum information science. Self-testing is a method to infer the underlying physics of a quantum experiment only from the measured statistics. While all bipartite pure entangled states can be self-tested, little is known about how to self-test quantum states of an arbitrary number of systems. Here, we introduce a framework for network-assisted self-testing and use it to self-test any pure entangled quantum state of an arbitrary number of systems. The scheme requires the preparation of a number of singlets that scales linearly with the number of systems, and the implementation of standard projective and Bell measurements, all feasible with current technology. When all the network constraints are exploited, the obtained self-testing certification is stronger than what is achievable in any Bell-type scenario. Our work does not only solve an open question in the field but also shows how properly designed networks offer new opportunities for the certification of quantum phenomena.
-
Causal Operations in Quantum Field Theory
Ian Jubb Dublin Institute For Advanced Studies
While Quantum Field Theory is the most accurate theory we have for predicting the microscopic world, there are still open problems regarding its mathematical description. In particular, the usual quantum mechanical description of measurements, unitary kicks, and other local operations has the potential to produce pathological causality violations. Not all local operations lead to such violations, but any that do cannot be physically realisable. It is an open question whether a given local operation in the theory respects causality, and hence whether a given local operation is physical. In this talk I will work toward a general condition that distinguishes causal and acausal local operations.
Zoom Link: https://pitp.zoom.us/j/98089863001?pwd=K2RWL2lNWFd4VDZYd013eUN3alNmQT09
-
Contextuality, Fine-tuning and Teleological Explanation
Emily Adlam Chapman University
In this talk I will assess various proposals for the source of the intuition that there is something problematic about contextuality, and argue that contextuality is best thought of in terms of fine-tuning. I will suggest that as with other fine-tuning problems in quantum mechanics, this behaviour can be understood as a manifestation of teleological features of physics. I will also introduce several formal mathematical frameworks that have been used to analyse contextuality and discuss how their results should be interpreted.
-
Possibility of causal loops without superluminal signalling -- a general framework
Vilasini Venkatesh University of York
Causality is fundamental to science, but it appears in several different forms. One is relativistic causality, which is tied to a space-time structure and forbids signalling outside the future. On the other hand, causality can be defined operationally using causal models by considering the flow of information within a network of physical systems and interventions on them. From both a foundational and practical viewpoint, it is useful to establish the class of causal models that can coexist with relativistic principles such as no superluminal signalling, noting that causation and signalling are not equivalent. We develop such a general framework that allows these different notions of causality to be independently defined and for connections between them to be established. The framework first provides an operational way to model causation in the presence of cyclic, fine-tuned and non-classical causal influences. We then consider how a causal model can be embedded in a space-time structure and propose a mathematical condition (compatibility) for ensuring that the embedded causal model does not allow signalling outside the space-time future. We identify several distinct classes of causal loops that can arise in our framework, showing that compatibility with a space-time can rule out only some of them. We then demonstrate the mathematical possibility of causal loops embedded in Minkowski space-time that can be operationally detected through interventions, without leading to superluminal signalling. Our framework provides conditions for preventing superluminal signalling within arbitrary (possibly cyclic) causal models and also allows us to model causation in post-quantum theories admitting jamming correlations. Applying our framework to such scenarios, we show that post-quantumjamming can indeed lead to superluminal signalling contrary to previous claims. Finally, this work introduces a new causal modelling concept of ``higher-order affects relations'' and several related technical results, which have applications for causal discovery in fined-tuned causal models.
-
Applied QBism and its Potential
John Debrota University of New Mexico
The Quantum Bayesian, or QBist, interpretation regards the quantum formalism to be a tool that a single agent may adopt to help manage their expectations for the consequences of their actions. In other words, quantum theory is an addition to decision theory, and its shape, we hope, can teach us something about the nature of reality. Beyond simple consistency, an interpretation is judged by its capacity to point the way forward. In the first half of the talk, I will highlight several ways in which my collaborators and I have applied QBist intuitions to pose and solve technical questions regarding the informational structure and conceptual function of quantum theory. At the root of many of these developments is the notion of a reference measurement, the key to a probabilistic representation of quantum theory. In this setting, we can explore the boundary of the quantum reasoning structure from a uniquely QBist angle. Working with such representations grants a new perspective and inspires questions which wouldn't have occurred otherwise; as examples, we will meet downstream results concerning quantum channels, discrete quasiprobability representations, and a variant of the information-disturbance tradeoff. Most recently, I have pursued ways in which QBism could be applied to the construction of new tools and strategies for existing problems in quantum information and computation. In the second half of the talk, we will encounter the first of these, an agent-based modeling proposal where multiple, suitably interacting, QBist decision-makers might collectively work out the solution to a task of interest in the right circumstances. I will describe some initial explorations of modeling agent belief dynamics in two contexts: first, an expectation sampling interaction with an eye to agential agreement, and, second, a setting where agents are players of quantum games. In the future, we imagine it is possible that a sufficiently mature development of the agent-based program we have begun could suggest new approaches to quantum algorithm design.
Zoom Link: https://pitp.zoom.us/j/95668668835?pwd=MUJtRGMxbEFzSEdVVmZ3TkR3dVVVZz09
-
Quantum networks theory
Pablo Arrighi Université de Grenoble
The formalism of quantum theory over discrete systems is extended in two significant ways. First, tensors and traceouts are generalized, so that systems can be partitioned according to almost arbitrary logical predicates. Second, quantum evolutions are generalized to act over network configurations, in such a way that nodes be allowed to merge, split and reconnect coherently in a superposition. The hereby presented mathematical framework is anchored on solid grounds through numerous lemmas. Indeed, one might have feared that the familiar interrelations between the notions of unitarity, complete positivity, trace-preservation, non-signalling causality, locality and localizability that are standard in quantum theory be jeopardized as the partitioning of systems becomes both logical and dynamical. Such interrelations in fact carry through, albeit two new notions become instrumental: consistency and comprehension.
Joint work with Amélia Durbec and Matt Wilson
Reference: https://arxiv.org/abs/2110.10587
Zoom Link: https://pitp.zoom.us/j/97185954578?pwd=OC9mUzl4L3V4WDZzVEZoekpOS24wQT09
-
Detecting nonclassicality in restricted general probabilistic theories
Leevi Leppajarvi University of Turku
The formalism of general probabilistic theories provides a universal paradigm that is suitable for describing various physical systems including classical and quantum ones as particular cases. Contrary to the often assumed no-restriction hypothesis, the set of accessible measurements within a given theory can be limited for different reasons, and this raises a question of what restrictions on measurements are operationally relevant. We argue that all operational restrictions must be closed under simulation, where the simulation scheme involves mixing and classical post-processing of measurements. We distinguish three classes of such operational restrictions: restrictions on measurements originating from restrictions on effects; restrictions on measurements that do not restrict the set of effects in any way; and all other restrictions. As a setting to detect nonclassicality in restricted theories we consider generalizations of random access codes, an intriguing class of communication tasks that reveal an operational and quantitative difference between classical and quantum information processing. We formulate a natural generalization of them, called random access tests, which can be used to examine collective properties of collections of measurements. We show that the violation of a classical bound in a random access test is a signature of either measurement incompatibility or super information storability, and that we can use them to detect differences in different restrictions.