The uncertainty principle bounds the uncertainties about the outcomes of two incompatible measurements, such as position and momentum, on a particle. It implies that one cannot predict the outcomes for both possible choices of measurement to arbitrary precision, even if information about the preparation of the particle is available in a classical memory. However, if the particle is prepared entangled with a quantum memory, it is possible to predict the outcomes for both measurement choices precisely. I will explain a recent extension of the uncertainty principle to incorporate this case. The new relation gives a lower bound on the uncertainties, which depends on the amount of entanglement between the particle and the quantum memory. If time permits, I will also outline a couple of applications.
The quantum spin Hall effect relates seemingly unrelated degrees of freedom, i.e., charge and spin degrees of freedom. We will discuss such "duality" can be extended to much wider class of quantum numbers, and the corresponding order parameters. In particular, two valleys in graphene can be viewed as an SU(2) pseudo spin degree of freedom, which turns out to be "dual" to the charge degree of freedom, pretty much in the same way as spin in the quantum spin Hall effect is closely tied with charge. I.e., graphene can host "the quantum valley Hall effect" (QVHE). We will show that one of the best venues to observe the QVHE in graphene is actually superconductivity that can be induced in graphene by proximity effect, say, where passing supercurrent in one direction induces accumulation of pseudo spin ("valley spin") at the boundary of graphene sample. We will also discuss the "inverse QVHE" as a possible scenario to explain the highly resistive state found in N=0 Landau level in graphene in a high magnetic field.
We give a detailed derivation of a supersymmetric configuration of wrapped D5-branes on a two-cycle of a warped resolved conifold. Our analysis reveals that the resolved conifold should support a non-Kahler metric with an SU(3) structure. We use this as a starting point of the geometric transition in type IIB theory. A mirror, and a subsequent flop transition using an intermediate M-theory configuration with a G2 structure, gives rise to the complete IR geometric transition in type IIA theory. A further mirror transformation gives the type IIB gravity dual of the IR gauge theory on the wrapped D5-branes. Expectedly non-Kahler deformations of the resolved and the deformed conifolds appear as the gravity duals of the confining gauge theories in type IIA and type IIB theories respectively, although in more generic cases these manifolds could also be non-geometric. In the local limit we reproduce precisely the scenarios presented in our earlier works. Our present work should therefore be viewed as providing a supergravity proof of geometric transitions in the full global scenarios in type II theories.
Large mixing angles and a mild mass hierarchy are observed in neutrino oscillations, in stark contrast with the quarks and charged leptons sectors where very hierarchical masses come along with small mixings.
We review and discuss the neutrino mass patterns that are technically natural, in the context of the seesaw mechanism and with a quark-lepton unification perspective.
We show that a seesaw in six dimensions offers an elegant and unique solution to the flavor puzzle. An explicit model is constructed, with a vortex background on a sphere. It offers an explanation for the replication of families in the Standard Model, and predicts suppressed flavour violating interactions.