Light bosons, including light axions, dark photons, and dilaton/moduli, are well motivated extensions to the Standard Model of particle physics and intriguing dark matter candidates. Much progress has been made in recent years in both astrophysical and lab searches for these light bosons with the understanding that these light bosons act like weak classical waves which permeate the space we occupy.
In this talk, I will discuss some novel phenomenon of light bosons in the dark sector, based on important in medium effects of these particles. I will show how to take advantage of medium effects of the photon to optimize searches for these light bosons with data coming from cosmic microwave background (CMB) experiments, and improve sensitivity to light dark photons and axions by orders of magnitude. I will also show how thinking of dark photon as weak classical waves breaks down during production of light bosons in both early and late universe, when gauged strings are produced in an event we call the string Bosenova, as well as the resulting observable consequences.
Increasing evidence for a stochastic gravitational background is being collected at pulsar timing arrays. The most plausible origin of the signal is the cumulative strain from the mergers of supermassive black holes at the center of galaxies across the history of the universe. I will discuss how the impact of dark matter dynamical friction on the black hole binary evolution can address some of the questions that this discovery raises. This includes the solution of the “final parsec problem” by which mergers would otherwise stall before gravitational wave emission can drive the coalesce. I will argue that the observational data favor the existence of dark matter self interactions with a cross-section and velocity dependence consistent with the ones capable of solving the small-scale structure problems of collisionless cold dark matter.
The absence of dark matter signals in direct detection experiments and collider searches has prompted interest in models in which dark matter belongs to a hidden sector minimally coupled to the Standard Model. In these scenarios, a long-lived massive particle might come to dominate the energy density of the early universe temporarily, causing an early matter-dominated era (EMDE) prior to the onset of nucleosynthesis. During an EMDE, matter perturbations grow more rapidly than they would in a period of radiation domination, which leads to the formation of microhalos as early as a redshift of ~5000. These microhalos generate distinct observable signatures, but the constraints on these signatures are highly sensitive to the small-scale cut-off in the matter power spectrum. We discuss the effects of an EMDE on the matter power spectrum, focusing on cases where the particle that dominates the Universe during the EMDE was initially relativistic, and the small-scale cut-off in the power spectrum is set by its pressure support. In addition, we present N-body simulations of the formation and dissipation of microhalos due to an EMDE, which imposes a free-streaming cut-off on the power spectrum after the EMDE. We discuss the implications of this gravitational heating on the (re)formation of microhalos close to the epoch of matter-radiation equality. We constrain these EMDE cosmologies using the observations of the Isotropic Gamma Ray Background and the boosted annihilation rates from the early bound structures resulting from an EMDE. In addition, we discuss prospects for observing these microhalos through pulsar timing arrays and microlensing.
The fundamental nature of dark matter (DM) so far eludes direct detection experiments, but it has left its imprint in the cosmic web. The standard cold DM model is remarkably well tested by cosmic microwave background and low-redshift galaxy surveys, but well-motivated particle candidates like ultra-light axions will leave signatures on small cosmic scales. These signatures are stronger at earlier times. Future 21 cm observations will transform our view of the primordial Universe, but we are already observing some of the first visible tracers of cosmic structure in the high-redshift galaxy population through the Hubble and James Webb Space Telescopes. I will present calculations of the effects of DM candidates like ultra-light axions on the high-z galaxy UV luminosity function. I will then present Hubble and Webb constraints on the allowed fraction of ULAs, accounting for uncertainties in how early galaxies trace the halo population, and discuss the implications for DM solutions to discrepancies in the late-time clustering of matter (S_8 tension).
Minimizing the energy of a many-body system is a fundamental problem in many fields. Although we hope a quantum computer can help us solve this problem better than classical computers, we have a very limited understanding of where a quantum advantage may be found. In this talk, I will present some recent theoretical advances that shed light on quantum advantages in this domain. First, I describe rigorous analyses of the Quantum Approximate Optimization Algorithm applied to minimizing energies of classical spin glasses. For certain families of spin glasses, we find the QAOA has a quantum advantage over the best known classical algorithms. Second, we study the problem of finding a local minimum of the energy of quantum systems. While local minima are much easier to find than ground states, we show that finding a local minimum under thermal perturbations is computationally hard for classical computers, but easy for quantum computers.
Primordial black holes (PBHs) have long been considered a promising candidate or an important component of dark matter (DM). Recent gravitational wave (GW) observations of binary black hole (BH) mergers have triggered renewed interest in PBHs in the stellar-mass (∼ 10 − 100 Msun) and supermassive regimes (∼ 10^7 − 10^11 Msun). Although only a small fraction (≲ 1%) of dark matter in the form of PBHs is required to explain observations, these PBHs may play important roles in early structure/star formation. We use cosmological zoom-in simulations and semi-analytical models to explore the possible impact of stellar-mass PBHs on first star formation, taking into account two effects of PBHs: acceleration of structure formation and gas heating by BH accretion feedback. We find that the standard picture of first star formation is not changed by stellar-mass PBHs (allowed by existing observational constraints), and their global impact on the cosmic star formation history is likely minor. However, PBHs do alter the properties of the first star-forming halos and can potentially trigger the formation of direct-collapse BHs in atomic cooling halos. On the other hand, supermassive PBHs may play more important roles as seeds of massive structures that can explain the apparent overabundance of massive galaxies in recent JWST observations. Our tentative models and results call for future studies with improved modeling of the interactions between PBHs, particle DM, and baryons to better understand the effects of PBHs on early structure/star formation and their imprints in high-redshift observations.