Strong Gravity research at Perimeter Institute is devoted to understanding both the theoretical and observational aspects of systems in which gravity is very strong (i.e., spacetime is highly curved or dynamical],. On one hand, this means studying extreme astrophysical systems, like black holes and neutron stars, as well as making and testing predictions for existing and forthcoming gravitational wave detectors, electromagnetic telescopes, and particle astrophysics experiments. On the other hand, it also includes a range of non-astrophysical topics, such as the instabilities of higher-dimensional black holes or the dynamics of strongly-coupled quantum field theories (via holography). The goal of strong gravity researcher is to test the validity of Einstein's theory of gravity, constrain proposed alternatives, understand the most extreme astrophysical systems, and investigate the ways in which highly curved or dynamical spacetimes are linked with a range of other problems in fundamental physics.
Format results
-
13 talks-Collection Number C24023
Talk
-
Strong Gravity Lecture
William East Perimeter Institute for Theoretical Physics
-
Strong Gravity Lecture
William East Perimeter Institute for Theoretical Physics
-
Strong Gravity Lecture
William East Perimeter Institute for Theoretical Physics
-
Strong Gravity Lecture
William East Perimeter Institute for Theoretical Physics
-
Strong Gravity Lecture
William East Perimeter Institute for Theoretical Physics
-
Strong Gravity Lecture
William East Perimeter Institute for Theoretical Physics
-
Strong Gravity Lecture
William East Perimeter Institute for Theoretical Physics
-
Strong Gravity Lecture
William East Perimeter Institute for Theoretical Physics
-
-
Advanced General Relativity (PHYS7840)
24 talks-Collection Number C24001Talk
-
Gravitational Physics
13 talks-Collection Number C24007Talk
-
Gravitational Physics Lecture - Zoom Only
Ruth Gregory King's College London
-
-
-
-
-
-
-
-
-
Puzzles in the Quantum Gravity Landscape: viewpoints from different approaches
34 talks-Collection Number C23033Talk
-
Lessons of the Effective Field Theory Treatment of General Relativity
John Donoghue University of Massachusetts Amherst
-
Positivity Bounds and Effective Fields Theories (A Review)
Andrew Tolley Imperial College London
-
Holography and its implications for quantum gravity - VIRTUAL
Johanna Erdmenger University of WĂĽrzburg
-
-
Piecing Together a Flat Hologram
Sabrina Pasterski Perimeter Institute for Theoretical Physics
-
Open Discussion with today's speakers (Donoghue, Erdmenger, Montero, Pasterski, Tolley)
-
John Donoghue University of Massachusetts Amherst
-
Johanna Erdmenger University of WĂĽrzburg
-
Miguel Mlontero IFT Madrid
-
Sabrina Pasterski Perimeter Institute for Theoretical Physics
-
Andrew Tolley Imperial College London
-
-
Panel Discussion - Strengths and limitations of EFT (Donoghue, Knorr, Montero, Quevedo, Tolley)
-
John Donoghue University of Massachusetts Amherst
-
Miguel Mlontero IFT Madrid
-
Fernando Quevedo University of Cambridge
-
Carlo Rovelli Aix-Marseille University
-
Andrew Tolley Imperial College London
-
-
Status, perspective and three challenges in the asymptotic-safety paradigm for quantum gravity - VIRTUAL
Astrid Eichhorn University of Southern Denmark
-
-
Quantum Simulators of Fundamental Physics
23 talks-Collection Number C23019Talk
-
-
Simulating one-dimensional quantum chromodynamics on a quantum computer: Real-time evolutions of tetra- and pentaquarks
Christine Muschik Institute for Quantum Computing (IQC)
-
-
Five short talks - see description for talk titles
-
Barbara Soda Perimeter Institute for Theoretical Physics
-
Dalila Pirvu Perimeter Institute for Theoretical Physics
- Leonardo Solidoro, Pietro Smaniotto, Kate Brown
-
-
First observations of false vacuum decay in a BEC
Ian Moss Newcastle University
-
Building Quantum Simulators for QuFTs
Jorg Schmiedmayer Technical University of Vienna
-
-
-
-
Gravitational Waves Beyond the Boxes II
15 talks-Collection Number C22013Talk
-
Welcome and Opening Remarks
-
William East Perimeter Institute for Theoretical Physics
-
Reed Essick Canadian Institute for Theoretical Astrophysics (CITA)
-
Luis Lehner Perimeter Institute for Theoretical Physics
-
Daniel Siegel University of Greifswald
-
Suvodip Mukherjee Tata Institute of Fundamental Research (TIFR)
-
Huan Yang Tsinghua University
-
-
Measure the cosmic expansion history of the Universe using GW sources
Jonathan Gair Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
-
Cross-correlation technique in GW cosmology
Benjamin Wandelt Institut d'Astrophysique de Paris
-
Matter in Extreme Conditions
Katerina Chatziioannou California Institute of Technology (Caltech)
-
Matter Effects in Waveform Models
Geraint Pratten University of Birmingham
-
Dark matter, PBHs, boson clouds
Salvatore Vitale Massachusetts Institute of Technology (MIT)
-
Multi-band GW observation from the third-generation detectors
Hsin-Yu Chen Massachusetts Institute of Technology (MIT)
-
-
-
PSI 2019/2020 - Gravitational Physics
15 talks-Collection Number C20004Talk
-
PSI 2019/2020 - Gravitational Physics - Lecture 1
Ruth Gregory King's College London
-
PSI 2019/2020 - Gravitational Physics - Lecture 2
Ruth Gregory King's College London
-
PSI 2019/2020 - Gravitational Physics - Lecture 3
Ruth Gregory King's College London
-
PSI 2019/2020 - Gravitational Physics - Lecture 4
Ruth Gregory King's College London
-
PSI 2019/2020 - Gravitational Physics - Lecture 5
Ruth Gregory King's College London
-
PSI 2019/2020 - Gravitational Physics - Lecture 6
Ruth Gregory King's College London
-
PSI 2019/2020 - Gravitational Physics - Lecture 7
Ruth Gregory King's College London
-
PSI 2019/2020 - Gravitational Physics - Lecture 8
Ruth Gregory King's College London
-
-
PSI 2019/2020 - Relativity (Kubiznak)
15 talks-Collection Number C19039Talk
-
-
PSI 2019/2020 - Relativity (Kubiznak) - Lecture 2
David Kubiznak Charles University
-
PSI 2019/2020 - Relativity (Kubiznak) - Lecture 3
David Kubiznak Charles University
-
PSI 2019/2020 - Relativity (Kubiznak) - Lecture 4
David Kubiznak Charles University
-
PSI 2019/2020 - Relativity (Kubiznak) - Lecture 5
David Kubiznak Charles University
-
PSI 2019/2020 - Relativity (Kubiznak) - Lecture 6
David Kubiznak Charles University
-
PSI 2019/2020 - Relativity (Kubiznak) - Lecture 7
David Kubiznak Charles University
-
PSI 2019/2020 - Relativity (Kubiznak) - Lecture 8
David Kubiznak Charles University
-
-
PSI 2019/2020 - Classical Physics (Kubiznak)
8 talks-Collection Number C19032Talk
-
PSI 2018/2019 - Strong Field Gravity (East)
15 talks-Collection Number C19008Talk
-
PSI 2018/2019 - Strong Field Gravity - Lecture 1
William East Perimeter Institute for Theoretical Physics
-
PSI 2018/2019 - Strong Field Gravity - Lecture 2
William East Perimeter Institute for Theoretical Physics
-
-
PSI 2018/2019 - Strong Field Gravity - Lecture 4
William East Perimeter Institute for Theoretical Physics
-
PSI 2018/2019 - Strong Field Gravity - Lecture 5
William East Perimeter Institute for Theoretical Physics
-
PSI 2018/2019 - Strong Field Gravity - Lecture 6
Luis Lehner Perimeter Institute for Theoretical Physics
-
PSI 2018/2019 - Strong Field Gravity - Lecture 7
William East Perimeter Institute for Theoretical Physics
-
PSI 2018/2019 - Strong Field Gravity - Lecture 8
William East Perimeter Institute for Theoretical Physics
-
-
Path to Kilohertz Gravitational-Wave Astronomy
17 talks-Collection Number C18014Talk
-
-
Hitting the High Notes: The High Frequency Dynamics of Neutron Star Mergers
William East Perimeter Institute for Theoretical Physics
PIRSA:18060045 -
Post-Merger Gravitational Wave Emission
Andreas Bauswein Max Planck Institute for Astrophysics (MPA), Garching
PIRSA:18060046 -
Searching for Ultralight Particles with Gravitational Waves
Masha Baryakhtar University of Washington
PIRSA:18060047 -
3G Detectors, Voyager
Rana Adhikari California Institute of Technology (Caltech) - Division of Physics Mathematics & Astronomy
PIRSA:18060048 -
Discussion Session
PIRSA:18060049 -
Gravitational Wave Telescopes: Some Cosmological Considerations
Latham Boyle University of Edinburgh
PIRSA:18060050 -
Astrophysics and Cosmology with Gravitational-Wave Population Inference
Eric Thrane Monash University - Department of Physics
PIRSA:18060051
-
-
Searching for New Particles with Black Hole Superradiance
11 talks-Collection Number C18010Talk
-
Searching for Light Bosons with Black Hole Superradiance
Savas Dimopoulos Perimeter Institute for Theoretical Physics
-
Superradiant instabilities and rotating black holes
Sam Dolan University of Southampton
PIRSA:18050028 -
Superradiant instabilities and rotating black holes
Avery Broderick University of Waterloo
-
Measuring Stellar-Mass Black Hole Spins via X-ray Spectroscopy
James Steiner Massachusetts Institute of Technology (MIT)
-
Superradiance Beyond the Linear Regime
Frans Pretorius Princeton University
-
Characterization of compact objects with present and future ground-based gravitational-wave detectors
Salvatore Vitale Massachusetts Institute of Technology (MIT)
-
LIGO and Virgo continuous wave searches - Overview and all-sky searches
keith Riles University of Michigan–Ann Arbor
-
Directed and targeted searches for continuous gravitational waves
Sylvia Zhu Albert Einstein Institute
-
-
Strong Gravity 2023/24
13 talks-Collection Number C24023This course will introduce some advanced topics in general relativity related to describing gravity in the strong field and dynamical regime. Topics covered include properties of spinning black holes, black hole thermodynamics and energy extraction, how to define horizons in a dynamical setting, formulations of the Einstein equations as constraint and evolution equations, and gravitational waves and how they are sourced. -
Advanced General Relativity (PHYS7840)
24 talks-Collection Number C24001Review of elementary general relativity. Timelike and null geodesic congruences. Hypersurfaces and junction conditions. Lagrangian and Hamiltonian formulations of general relativity. Mass and angular momentum of a gravitating body. The laws of black-hole mechanics.
Zoom: https://pitp.zoom.us/j/97183751661?pwd=T0szNnRjdUM2dENYNTdmRmJCZVF1QT09
-
Gravitational Physics
13 talks-Collection Number C24007The Gravitational Physics course takes your knowledge and practice of gravity to the next level. We start by recapping the essential elements of differential geometry, adding some new techniques to the toolbox, then apply some of these methods to learning about submanifolds, extra dimensions, and black hole thermodynamics. Towards the end of the course, we delve into the frontiers, with a sample of recent research topics.
-
Puzzles in the Quantum Gravity Landscape: viewpoints from different approaches
34 talks-Collection Number C23033Unraveling the quantum nature of gravity is one of the most pressing problems of theoretical physics. Several ideas have been put forward and resulted in a number of theories of quantum gravity. While these theories have explored different facets of the “quantum gravity landscape”, all viable approaches should ultimately make contact with observations, and answer exciting questions in cosmology and black-hole physics.
Sharing knowledge, exchanging ideas, and building a dictionary between different theories are crucial steps toward answering these questions, efficiently contrasting different theories, and ultimately reaching a deeper understanding of our Universe.
This conference will contribute to these goals by bringing together leading experts in different approaches to quantum gravity, gravitational effective field theory, black-hole physics, and cosmology. We will focus on specific puzzles in quantum gravity and their resolutions within different approaches. The conference will be highly interactive, with plenty of time to discuss common problems, understand the big picture, and develop novel connections between fields.Registration: Registration is now open, and both in-person and virtual participation is welcome. Online participants will be able to interact on an equal footing in question sessions and discussions. In-person attendance is limited and will be approved on a first-come, first-served basis. Talks are by invitation only, but in-person participants are encouraged to apply to present a poster.
Spam warning: There is an increasing number of scam agencies reaching out to conference speakers and attendees. Perimeter Institute does not use third-party agencies. We advise speakers and attendees to ignore emails and not to provide any details to anyone who is not from Perimeter Institute.
Confirmed Speakers and Panelists:
- Abhay Ashtekar (Penn State University)
- Robert Brandenberger (McGill University)
- Luca Buoninfante (Nordita)
- Xavier Calmet (University of Sussex)
- Francesco di Filippo (Kyoto University)
- Bianca Dittrich (Perimeter Institute)
- John Donoghue (University of Massachusetts)
- Astrid Eichhorn (CP3-origins)
- Johanna Erdmenger (WĂĽrzburg University)
- Ghazal Geshnizjani (Perimeter Institute)
- Ruth Gregory (King's College)
- Lavinia Heisenberg (Heidelberg University)
- Bob Holdom (University of Toronto)
- Benjamin Knorr (Nordita)
- Renate Loll (Radboud University Nijmegen)
- Miguel Montero (IFT Madrid)
- Rob Myers (Perimeter Institute)
- Sabrina Pasterski (Perimeter Institute)
- Fernando Quevedo (Cambridge University)
- Lisa Randall (Harvard University)
- Kasia Rejzner (York University)
- Mairi Sakellariadou (King's College)
- Lee Smolin (Perimeter Institute)
- Kellogg Stelle (Imperial College)
- Sumati Surya (Raman Research Institute)
- Andrew Tolley (Imperial College)
- Neil Turok (University of Edinburgh)
- Pedro Vieira (Perimeter Institute)
- Yasaman Yazdi (Imperial College)
Territorial Land Acknowledgement
Perimeter Institute acknowledges that it is situated on the traditional territory of the Anishinaabe, Haudenosaunee, and Neutral peoples.
Perimeter Institute is located on the Haldimand Tract. After the American Revolution, the tract was granted by the British to the Six Nations of the Grand River and the Mississaugas of the Credit First Nation as compensation for their role in the war and for the loss of their traditional lands in upstate New York. Of the 950,000 acres granted to the Haudenosaunee, less than 5 percent remains Six Nations land. Only 6,100 acres remain Mississaugas of the Credit land.
We thank the Anishinaabe, Haudenosaunee, and Neutral peoples for hosting us on their land.
-
Quantum Simulators of Fundamental Physics
23 talks-Collection Number C23019This meeting will bring together researchers from the quantum technology, atomic physics, and fundamental physics communities to discuss how quantum simulation can be used to gain new insight into the physics of black holes and the early Universe. The core program of the workshop is intended to deepen collaboration between the UK-based Quantum Simulators for Fundamental Physics (QSimFP; https://www.qsimfp.org) consortium and researchers at Perimeter Institute and neighbouring institutions. The week-long conference will consist of broadly-accessible talks on work within the consortium and work within the broader community of researchers interested in quantum simulation, as well as a poster session and ample time for discussion and collaboration
Territorial Land AcknowledgementPerimeter Institute acknowledges that it is situated on the traditional territory of the Anishinaabe, Haudenosaunee, and Neutral peoples.
Perimeter Institute is located on the Haldimand Tract. After the American Revolution, the tract was granted by the British to the Six Nations of the Grand River and the Mississaugas of the Credit First Nation as compensation for their role in the war and for the loss of their traditional lands in upstate New York. Of the 950,000 acres granted to the Haudenosaunee, less than 5 percent remains Six Nations land. Only 6,100 acres remain Mississaugas of the Credit land.
We thank the Anishinaabe, Haudenosaunee, and Neutral peoples for hosting us on their land.
-
Gravitational Waves Beyond the Boxes II
15 talks-Collection Number C22013Gravitational Waves Beyond the Boxes II -
PSI 2019/2020 - Gravitational Physics
15 talks-Collection Number C20004PSI 2019/2020 - Gravitational Physics -
PSI 2019/2020 - Relativity (Kubiznak)
15 talks-Collection Number C19039PSI 2019/2020 - Relativity (Kubiznak) -
PSI 2019/2020 - Classical Physics (Kubiznak)
8 talks-Collection Number C19032PSI 2019/2020 - Classical Physics (Kubiznak) -
PSI 2018/2019 - Strong Field Gravity (East)
15 talks-Collection Number C19008PSI 2018/2019 - Strong Field Gravity (East) -
Path to Kilohertz Gravitational-Wave Astronomy
17 talks-Collection Number C18014We are entering an exponentially growing phase of gravitational-wave (GW) astronomy excitingly represented by the Nobel Prize in Physics last year - only two years after the first detection. The successful multi-messenger detection of binary neutron star merger in last August has triggered increasing interests to probe the neutron star post-merger gravitational radiations as they will give more decisive and informative description of the post-merger object itself and the GW/electromagnetic emission mechanism. As the post-merger GWs mainly lie in the 1kHz-4kHz band it becomes necessary and important to think about possible third-generation GW detectors that are primarily sensitive to the high frequency band.Ă‚ In this workshop we shall focus on possible science case and detector configuration for kHz high-frequency detectors. We will have several invited talks while leaving more time for free discussions. We hope this workshop can serve as a seed for much broader discussions in the GW astronomy community and help promote high frequency detectors as one of the development directions of third-generation GW detectors.
-
Searching for New Particles with Black Hole Superradiance
11 talks-Collection Number C18010Black hole superradiance is a fascinating process in general relativity and a unique window on ultralight particles beyond the standard model. Bosons -- such as axions and dark photons -- with Compton wavelengths comparable to size of astrophysical black holes grow exponentially to form large clouds spinning down the black hole in the process and produce monochromatic continuous gravitational wave radiation. In the era of gravitational wave astronomy and increasingly sensitive observations of astrophysical black holes and their properties superradiance of new light particles is a promising avenue to search for new physics in regimes inaccessible to terrestrial experiments. This workshop will bring together theorists data analysts and observers in particle physics gravitational wave astronomy strong gravity and high energy astrophysics to explore the signatures of black hole superradiance and to study the current and future possibilities of searching for new particles with black holes.