I shall discuss entanglement - assisted invariance (symmetry exhibited by correlated quantum states) and describe how it can be used to understand the nature of ignorance, and, hence, the origin of probabilities in quantum physics. WHZ, Phys. Rev. Lett. 90, 120404 (2003); Rev. Mod. Phys. 75, 715 (2003); Phys. Rev. 71, 052105 (2005) (quant-ph/0405161).
Simon Singh grew up in Somerset, and completed his undergraduate work at Imperial College London, and his Ph.D. at Cambridge University and CERN. He has worked with the BBCs Science Department since 1990. In 1996, Singh directed the award-winning documentary Fermats Last Theorem. The documentary was also nominated for an Emmy under the American title The Proof. He is the author of three books, most recently, the Big Bang, a history of cosmology. big bang, Simon Singh, cosmology, universe, galaxies, Hubble, Doppler effect, steady state universe, microwaves, radio astronomy
Highest energy cosmic rays reach {\it macroscopic} energies $> 10^{20}$ eV ($\sim 10$ joules; corresponding linear momentum in one proton is similar to a slapshot hockey puck's). Such protons can either be accelerated by nearby astrophysical sources or be by-products of decay of unknown superheavy fundamental particles. After reviewing phenomenology of cosmic rays, I will discuss a novel {\it non-stochastic} acceleration mechanism in jets of powerful active galactic nuclei. The mystery of ultra high energy cosmic rays is likely soon to be resolved by Pierre Auger observatory.