The interplay of symmetry and topology has been at the forefront of recent progress in quantum matter. In this talk I will discuss an unexpected connection between band topology and competing orders in a quantum magnet. The key player is the two-dimensional Dirac spin liquid (DSL), which at low energies is described by an emergent Quantum Electrodynamics (QED) with massless Dirac fermions (a.k.a. spinons) coupled to a U(1) gauge field. A long-standing open question concerns the symmetry properties of the magnetic monopoles, an important class of critical degrees of freedom. I will show that the monopole properties can be determined from the topology of the underlying spinon band structure. In particular, the lattice momentum and angular momentum of monopoles can be determined from the charge (or Wannier) centers of the corresponding spinon insulators. I will then discuss the consequences of the monopole properties, such as the stability of the DSL on different lattices, universal (experimental and numerical) signatures of DSL, and competing symmetry-breaking phases near the DSL state.
I will discuss several examples of novel continuous phase transitions, primarily in 3+1-D, that are beyond the standard Landau paradigm of order parameter fluctuations. These provide non-trivial examples of deconfined quantum critical points.
In the study of three-dimensional gapped models, two-dimensional gapped states can be considered as a free resource. This is the basic idea underlying our proposal of the notion of `foliated fracton order'. Using this idea, we have found that many of the known type-I fracton models, like the X-cube model and the checkerboard model, have the same foliated fracton order. In this talk, I will present three-dimensional fracton models with a different kind of foliated fracton order. The previously known foliated fracton order corresponds to the gauge theory of a simple paramagnet with subsystem planar symmetry. The new order corresponds to a twisted version of the gauge theory where the system before gauging has nontrivial order protected by the subsystem planar symmetries. I will discuss a way to identify the nontrivial order by compactifying the system in the z direction and analyzing the resulting two dimensional order.
The classical Hall algebra of the category of representations of one-loop quiver is isomorphic to the ring of symmetric functions, and Hall-Littlewood polynomials arise naturally as the images of objects. I will talk about a second "fusion" product on this algebra, whose structure constants are given by counting of bundles with nilpotent endomorphisms on P^1 with restrictions at 0, 1 and infinity. The two products together make up a structure closely related to the elliptic Hall algebra. In the situations when bundles can be explicitly enumerated, I will explain how this leads to q,t-identities conjectured by combinatorists, such as the shuffle conjecture and its generalizations. This is a joint project with Erik Carlsson.