We present a general scheme for constructing topological lattice models in any space dimension using tensor networks. Our approach relies on finding "simplex tensors" that satisfy a finite set of tensor equations. Given any such tensor, we construct a discrete topological quantum field theory (TQFT) and local commuting projector Hamiltonians on any lattice. The ground space degeneracy of these models is a topological invariant that can be computed via the TQFT, and the ground states are locally indistinguishable when the ground space is nondegenerate on the sphere. Any ground state can be realized by a tensor network obtained by contracting simplex tensors. Our models are exact renormalization fixed points, covering a broad range of models in the literature. We identify symmetries on the virtual level of the tensor networks of our models that generalize the topological invariance properties beyond fixed point models. This framework combined with recent tensor network techniques is convenient for studying excitations, their statistics, phase transitions, and ultimately for classification of gapped phases of many-body theories in 3+1 and higher dimensions.
The interaction of Hopf monoids and Frobenius monoids is the productive nucleus of the ZX calculus, where famously each Frobenius monoid-comonoid pair corresponds to a complementary basis and the Hopf structure describes the interaction between the bases. The theory of Interacting Hopf monoids (IH), introduced by Bonchi, Sobocinski and Zanasi, features essentially the same Hopf-Frobenius interaction pattern. The free symmetric monoidal category generated by IH is isomorphic to the category of linear relations over the field of rationals: thus the string diagrams of IH are an alternative graphical language for elementary concepts of linear algebra. IH has a modular construction via distibutive laws of props, and has been applied as a compositional language of signal flow graphs. In this talk I will outline the equational theory, its construction and applications, as well as report on ongoing and future work.
Categorical quantum mechanics is a research programme which aims to axiomatise (finite dimensional) quantum theory as an algebraic theory inside an abstract symmetric monoidal category. The central idea is that quantum observables can be
axiomatised as certain Frobenius algebras, and that two observables are (strongly) complementary when their Frobenius algebras jointly form a Hopf algebra. The resulting theory is surprisingly powerful, especially when combined with its graphical notation. In this talk
I'll introduce the main concepts and present some applications to quantum computation.
Kitaev originally constructed his quantum double model based on finite groups and anticipated the extension based on Hopf algebras, which was achieved later by Buerschaper, etc. In this talk, we will present the work on the generalization of Kitaev model for quantum groupoids and discuss its ground states.
I will describe a framework for the study of symmetry-enriched topological order using graded matrix product operator algebras. The approach is based upon an explicit construction of the extrinsic symmetry defects, which facilitates the extraction of their physical properties. This allows for a simple analysis of dual phase transitions, induced by gauging a global symmetry, and condensation of a bosonic subtheory.
I will discuss some (higher-)categorical structures present in three-dimensional topological field theories that include topological defects of any codimension. The emphasis will be on two topics:
(1) For Reshetikhin-Turaev type theories, regarded as 3-2-1-extended TFTs, I will explain why codimension-1 boundaries and defects form bicategories of module categories over suitable fusion categories.
In the case of defects separating three-dimensional regions supporting the same theory, the relevant fusion category $A$ is the modular tensor category underlying that theory, while for defects separating two theories of Turaec-Viro type with underlying fusion categories $A_1$ and $A_2$, respectively, $A$ is the the Deligne product $A_1 \boxtimes A_2^{op}$.
(2) I will indicate the building blocks of a generalization of the TV-BW state-sum construction to theories with defects. Making use of ends and coends, various aspects of this construction can be formulated without requiring semisimplicity.
We show that Kitaev's lattice model for a finite-dimensional semisimple Hopf algebra H is equivalent to the combinatorial quantisation of Chern-Simons theory for the Drinfeld double D(H). As a result, Kitaev models are a special case of combinatorial quantization of Chern-Simons theory by Alekseev, Grosse and Schomerus. This equivalence is an analogue of the relation between Turaev-Viro and Reshetikhin-Turaev TQFTs and relates them to the quantisation of moduli spaces of flat connections.
We show that the topological invariants of the two models, the algebra of operators acting on the protected space of the Kitaev model and the quantum moduli algebra from the combinatorial quantisation formalism, are isomorphic. This is established in a gauge theoretical picture, in which both models appear as Hopf algebra valued lattice gauge theories.
A variety of models, especially Kitaev models, quantum Chern-Simons theory, and models from 3d quantum gravity, hint at a kind of lattice gauge theory in which the gauge group is generalized to a Hopf algebra. However, until recently, no general notion of Hopf algebra gauge theory was available. In this self-contained introduction, I will cover background on lattice gauge theory and Hopf algebras, and explain our recent construction of Hopf algebra gauge theory on a ribbon graph (arXiv:1512.03966). The resulting theory parallels ordinary lattice gauge theory, generalizing its structure only as necessary to accommodate more general Hopf algebras. All of the key features of gauge theory, including gauge transformations, connections, holonomy and curvature, and observables, have Hopf algebra analogues, but with a richer structure arising from non-cocommuntativity, the key property distinguishing Hopf algebras from groups. Main results include topological invariance of algebras of observables, and a gauge theoretic derivation of algebras previously obtained in the combinatorial quantization of Chern-Simons theory.
I will discuss the relation between topological field theories and gapped phases of matter. I will propose a general formalism to define a class of TFTs which can be realized by commuting projector Hamiltonians. This allows one to apply rigorous mathematical theorems about TFTs to gapped phases of matter. I will also discuss the role of generalized cohomology theories and spectra in the classification of SPT phases.
The (Freedman-Kitaev) topological model for quantum computation is an inherently fault-tolerant computation scheme, storing information in topological (rather than local) degrees of freedom with quantum gates typically realized by braiding quasi-particles in two dimensional media. I will give an overview of this model, emphasizing the mathematical aspects.
The aim of this talk is to give an introduction to modular categories, touching both basics and recent developments. I will begin with a quick reminder concerning tensor categories, in particular braided and symmetric ones, and notions like duality, fusion and spherical categories. We'll meet algebras in tensor categories, categories of modules, module categories and their connection. I will then focus on modular categories and some basic structure theory. We will consider two ways of obtaining modular categories: modularization and the Drinfeld center. (The important third one, quantum groups at root of unity, is too complicated to be discussed in any depth.) The Drinfeld center will be used to define Witt equivalence of modular categories and the Witt group. Several equivalent characterization of Witt equivalence, using module categories, will be discussed. The Witt group will be crucial for any (future) classification of modular categories, as well as for application to physics in condensed matter physics and conformal field theory.
I will give an introduction to the Kitaev quantum double models for Hopf C*-algebras. To this end I will introduce a graphical tensor-network notation to represent the algebraic objects and axioms. Using this notation I will then present the vertex- and plaquette symmetries of the model and discuss their interaction and the excitation structure they give rise to.