We will point out that there is a universal thermodynamical property of entanglement entropy for excited states. We will derive this by using the AdS/CFT correspondence in any dimension. We will also directly confirm this property from direct field theoretic calculations in two dimensions. We will define a new quantity called entanglement density by taking derivatives of entanglement entropy with respect to the shape of subsystem. We will show that this quantity coincides with the energy density by taking the small subsystem limit and show that this is another equivalent statement of the thermodynamical property.
In quantum systems with symmetry, the same topological phase can be enriched by symmetry in different ways, resulting in different symmetry transformations of the superselection sectors in the phase. However, not all symmetry transformations are allowed on the superselection sectors in topological phases in purely 2D systems. In this talk, I will discuss some examples of such symmetry enrichment of topological phases, which seem to be consistent with the fusion and braiding rules of the superselection sectors in the theory but are nonetheless impossible to realize in 2D. Interestingly, we show further that they can be realized on the surface of a 3D gapped system with a topologically trivial bulk.
I will discuss a family of solvable 3D lattice models that have a ``trivial" bulk, in which all excitations are confined, but exhibit topologically ordered surface states. I will discuss perturbations to these models that can drive a phase transition in which some of these excitations become deconfined, driving the system into a phase with bulk topological order.
The existence of three generations of neutrinos and their mass mixing is a deep mystery of our universe. On the other hand, Majorana's elegant work on the real solution of Dirac equation predicted the existence of Majorana particles in our nature, unfortunately, these Majorana particles have never been observed. In this talk, I will begin with a simple 1D condensed matter model which realizes a T^2=-1 time reversal symmetry protected superconductors and then discuss the physical property of its boundary Majorana zero modes. It is shown that these Majorana zero modes realize a T^4=-1 time reversal doubelets and carry 1/4 spin. Such a simple observation motivates us to revisit the CPT symmetry of those ghost particles--neutrinos by assuming that they are Majorana zero modes. Interestingly, we find that a topological Majorana particle will realize a P^4=-1 parity symmetry as well. It even realizes a nontrivial C^4=-1 charge conjugation symmetry, which is a big surprise from a usual perspective that the charge conjugation symmetry for a Majorana particle is trivial. Indeed, such a C^4=-1 charge conjugation symmetry is a Z_2 gauge symmetry and its spontaneously breaking leads to the origin of neutrino mass. We further attribute the origin of three generations of neutrinos to three distinguishable types of topological Majorana zero modes protected by CPT symmetry. Such an assumption leads to an S3 symmetry in the generation space and uniquely determines the mass mixing matrix with no adjustable parameters! In the absence of CP violation, we derive \theta_12=32degree, \theta_23=45degree and \theta_13=0degree, which is intrinsically closed to the current experimental results. We further predict an exact mass ratio of the three mass eigenstate with m_1/m_3~m_2/m_3=3/\sqrt{5}.
We study the non-abelian statistics characterizing systems where counter-propagating gapless modes on the edges of fractional quantum Hall states are gapped by proximity-coupling to superconductors and ferromagnets. The most transparent example is that of a fractional quantum spin Hall state, in which electrons of one spin direction occupy a fractional quantum Hall state of $\nu= 1/m$, while electrons of the opposite spin occupy a similar state with $\nu = -1/m$. However, we also propose other examples of such systems, which are easier to realize experimentally. We find that each interface between a region on the edge coupled to a superconductor and a region coupled to a ferromagnet corresponds to a non-abelian anyon of quantum dimension $\sqrt{2m}$. We calculate the unitary transformations that are associated with braiding of these anyons, and show that they are able to realize a richer set of non-abelian representations of the braid group than the set realized by non-abelian anyons based on Majorana fermions. We carry out this calculation both explicitly and by applying general considerations. Finally, we show that topological manipulations with these anyons cannot realize universal quantum computation.
Electron topological insulators are members of a broad class of “symmetry protected topological” (SPT) phases of fermions and bosons which possess distinctive surface behavior protected by bulk symmetries. For 1d and 2d SPT’s the surfaces are either gapless or symmetry broken, while in 3d, gapped symmetry-respecting surfaces with (intrinsic) 2d topological order are also possible. The electromagnetic response of (some) SPT’s can provide an important characterization, as illustrated by the Witten effect in 3d electron topological insulators. Using a 3d parton-gauge theory construction, we have recently developed a dyon condensation approach to access exotic new phases including some 3d bosonic SPT’s. A bosonic SPT with both time-reversal and charge conservation symmetries, is thereby obtained, a phase which supports a gapped, symmetry-unbroken 2d surface with topological order - a toric code with charge one-half anyons. The 3d electromagnetic response of this bosonic SPT phase is quite remarkable - an external magnetic monopole can remain charge neutral, but is statistically transmuted becoming a fermion - a “statistical Witten effect” that characterizes the phase.
The E8 state of bosons is a 2+1d gapped phase of matter which has no topological entanglement entropy but has protected chiral edge states in the absence of any symmetry. This peculiar state is interesting in part because it sits at the boundary between short- and long-range entangled phases of matter. When the system is translation invariant and for special choices of parameters, the edge states form the chiral half of a 1+1d conformal field theory - an E8 level 1 Wess-Zumino-Witten model. However, in general the velocities of different edge channels are different and the system does not have conformal symmetry. We show that by considering the most general microscopic Hamiltonian, in particular by relaxing the constraint of translation invariance and adding disorder, conformal symmetry remerges in the low energy limit. The disordered fixed point has all velocities equal and is the E8 level 1 WZW model. Hence a highly entangled and highly symmetric system emerges, but only when the microscopic Hamiltonian is completely asymmetric.
Some 2D quantum many-body systems with a bulk energy gap support gapless edge modes which are extremely robust. These modes cannot be gapped out or localized by general classes of interactions or disorder at the edge: they are "protected" by the structure of the bulk phase. Examples of this phenomena include quantum Hall states and 2D topological insulators, among others. Recently, much progress has been made in understanding protected edge modes in non-interacting fermion systems. However, less is known about the interacting case. A basic problem is to predict, for general interacting systems, when such edge modes are present or absent, and to identify the different physical mechanisms that underlie their stability. In this talk, I will discuss this problem in the simplest case: interacting fermion systems without any symmetry.
Large zero point motion of light atoms in solid Helium 4 leads to several anomalous properties, including a supersolid type behavior. We suggest an `anisotropic quantum melted' atom density wave model for solid He4 with hcp symmetry. Here, atoms preferentially quantum melt along the c-axis and maintain self organized crystallinity and confined dynamics along ab-plane. This leads to profound consequences: i) statistics transmutation of He4 atoms into fermions for c-axis dynamics, arising from restricted one dimensional motion and hard core repulsion, ii) resulting `fermionic strings' undergo Peierls instability (an atom density wave formation) in a staggered fashion and help regain the original hcp crystal symmetry, iii) `particle-hole' type excitations iv) emergence of `confined' `half atom' domain wall excitations, and so on. Known anomalies of solid He4 gets a natural qualitative explanation in the present scenario.
Anyon models can be symmetric under some permutations of their topological charges. One can then conceive topological defects that, under monodromy, transform anyons according to a symmetry. We study the realization of such defects in the toric code model, showing that a process where defects are braided and fused has the same outcome as if they were Ising anyons.