
Format results
-
-
Entanglement Entropy Scaling Laws and Eigenstate Thermalization in Many-Particle Systems
Kun Yang Florida State University
-
(0,2) GLSMs for Heterotic Flux Compactifications
Callum Quigley Kirkland & Ellis
-
What if Gravity is like QCD? -- Revisiting Quadratic Gravity in Analogy with QCD
Jing Ren University of Toronto
-
Cosmic Neutrinos and Other Light Relics
Joel Meyers Southern Methodist University
-
-
-
Orientation matters: interaction effects in topological insulators and superconductors
Shinsei Ryu University of Illinois at Urbana-Champaign (UIUC)
-
-
-
Supersymmetric flavors on curved space and a precision test of AdS/CFT
Christoph Uhlemann Vrije Universiteit Brussel
-
-
Technology as Foundation, from the Quantum Informational Viewpoint: The Future (and some Past) of Quantum Theory after the Higgs Boson
Arkady Plotnitsky Purdue University
The talk first offers a brief assessment of the realist and nonrealist understanding of quantum theory, in relation to the role of probability and statistics there from the perspective of quantum information theory, in part in view of several recent developments in quantum information theory in the work of M. G. D’Ariano and L. Hardy, among others. It then argues that what defines quantum theory, both quantum mechanics and quantum field theory, most essentially, including as concerns realism or the lack thereof and the probability and statistics, is a new (vs. classical physics or relativity) role of technology in quantum physics. This role was first considered by Bohr in his analysis of the fundamental role of measuring instruments in the constitution of quantum phenomena, which, he argued, is responsible for the difficulties of providing a realist description of quantum objects and their behavior, and, correlatively, for the irreducibly probabilistic or statistical nature of all quantum predictions. In this paper, I mean “technology” in a broader sense, akin to what the ancient Greeks called “tekhne” (“technique”). It refers the means by which we create new mental and material constructions, such as mathematical, scientific, or philosophical theories or works of art and architecture, or machines, and through which we interact with the world. I shall consider three forms of technology—mathematical, experimental, and digital. The relationships among them were crucial to the discovery of the Higgs boson, and, I argue, are likely to remain equally crucial, indeed unavoidable, in the future of physics, especially quantum physics.
-
Entanglement Entropy Scaling Laws and Eigenstate Thermalization in Many-Particle Systems
Kun Yang Florida State University
While entanglement entropy of ground states usually follows the area law, violations do exist, and it is important to understand their origin. In 1D they are found to be associated with quantum criticality. Until recently the only established examples of such violation in higher dimensions are free fermion ground states with Fermi surfaces, where it is found that the area law is enhanced by a logarithmic factor. In Ref. [1], we use multi-dimensional bosonization to provide a simple derivation of this result, and show that the logarithimic factor has a 1D origin. More importantly the bosonization technique allows us to take into account the Fermi liquid interactions, and obtain the leading scaling behavior of the entanglement entropy of Fermi liquids. The central result of our work is that Fermi liquid interactions do not alter the leading scaling behavior of the entanglement entropy, and the logarithmic enhancement of area law is a robust property of the Fermi liquid phase. In sharp contrast to the fermioic systems with Fermi surfaces, quantum critical (or gapless) bosonic systems do not violate the area law above 1D (except for the case discussed below). The fundamental difference lies in the fact that gapless excitations live near a single point (usually origin of momentum space) in such bosonic systems, while they live around an (extended) Fermi surface in Fermi liquids. In Ref. [2], we studied entanglement properties of some specific examples of the so called Bose metal states, in which bosons neither condense (and become a superfluid) nor localize (and
insulate) at T=0. The system supports gapless excitations around ``Bose surfaces", instead of isolated points in momentum space. We showed that similar to free Fermi gas and Fermi liquids, these states violate the entanglement area law in a logarithmic fashion. Compared to ground states, much less is known concretely about entanglement in
(highly) excited states. Going back to free fermion systems, in [3] we show that there exists a duality relation between ground and excited states, and the area law obeyed by ground state turns into a volume law for excited states, something that is widely expected but very hard to prove. Most importantly, we find in appropriate limits the reduced density matrix of a subsystem takes the form of thermal density matrix, providing an explicit example of the eigenstate thermalization hypothesis. Our work [3] explicitly demonstrates how statistical physics emerges from entanglement in a single eigenstate.
[1] Entanglement Entropy of Fermi Liquids via Multi-dimensional Bosonization, Wenxin Ding, Alexander Seidel, Kun Yang, Phys. Rev. X 2,
011012 (2012).
[2] Violation of Entanglement-Area Law in Bosonic Systems with Bose
Surfaces: Possible Application to Bose Metals, Hsin-Hua Lai, Kun Yang, N.
E. Bonesteel, Phys. Rev. Lett. 111, 210402 (2013).
[3] Entanglement entropy scaling laws and eigenstate thermalization in free fermion systems, Hsin-Hua Lai, Kun Yang, Phys. Rev. B 91,081110 (2015)
-
(0,2) GLSMs for Heterotic Flux Compactifications
Callum Quigley Kirkland & Ellis
The gauged linear sigma model (GLSM) with (0,2) supersymmetry is an excellent tool for generating solutions of the heterotic string. In this talk, I will review a novel mechanism within the (0,2) GLSM for producing target spaces with H-flux, and explore several examples of this type. Along the way, a remarkable relationship between (0,2) gauge anomalies and H-flux will emerge. We will also see hints that many of these spaces require a stringy notion of geometry.
-
What if Gravity is like QCD? -- Revisiting Quadratic Gravity in Analogy with QCD
Jing Ren University of Toronto
It has been known for a long time that quadratic gravity, which generalizes Einstein gravity with quadratic curvature terms, is renormalizable and asymptotically free in the UV. However the theory is afflicted with a ghost problem if the perturbative spectrum is taken seriously. We explore the possibility that the dimensional scale of Einstein-Hilbert term is far smaller than the scale where the dimensionless gravitational couplings become strong. The propagation of the gravitational degrees of freedom can change character at this strong interaction scale. Lattice QCD studies show a particular suppression of gluon propagator in the IR, which removes the perturbative gluon from the physical spectrum. We propose that the same fate can apply to the spin-2 ghost. The Planck mass is associated with the strong dynamics scale below which the normal Einstein description can emerge. In this picture both the UV and IR limits have weakly coupled descriptions, similar to perturbative QCD and the chiral Lagrangian. Some implications of a small mass ratio in the theory are considered.
-
Cosmic Neutrinos and Other Light Relics
Joel Meyers Southern Methodist University
Cosmic neutrinos carry a wealth of information about both cosmology and particle physics, but they are notoriously difficult to observe. Rapid advancement in measurements of the cosmic microwave background, however, have allowed us to indirectly constrain some properties of the cosmic neutrino background. I will discuss the current status and future prospects for improving constraints on cosmic neutrinos, focusing in part of the phase shift of acoustic peaks in the cosmic microwave background which results from neutrino fluctuations. I will also discuss how improved measurements from CMB-Stage IV will naturally constrain a wealth of beyond the standard model physics.
-
Decoherence as a way to measure extremely soft collisions with Dark Matter
Jess Riedel NTT Research
Quantum superpositions of matter are unusually sensitive to decoherence by tiny momentum transfers, in a way that can be made precise with a new diffusion standard quantum limit. Upcoming matter interferometers will produce unprecedented spatial superpositions of over a million nucleons. What sorts of dark matter scattering events could be seen in these experiments as anomalous decoherence? We show that it is extremely weak but medium range interaction between matter and dark matter that would be most visible, such as scattering through a Yukawa potential. We construct toy models for these interactions, discuss existing constraints, and delineate the expected sensitivity of forthcoming experiments. In particular, the OTIMA interferometer developing at the University of Vienna will directly probe many orders of magnitude of parameter space, and the proposed MAQRO satellite experiment would be vastly more sensitive yet. This is a multidisciplinary talk that will be accessible to a non-specialized audience.
-
Mysterious Magnetars: Maximum Stars
Vikram Soni Jamia Millia Islamia
Magnetars are exceptional neutron stars with the highest magnetic
fields ( 10^15 gauss) in the universe, an unusual quasi steady X
radiation (10^35 ergs/sec) and also produce flares which are some of
the brightest events (10^46 ergs in one fifth of a second) to be
recorded. There is no satisfactory model of magnetars.
The talk will cover neutron stars and a new model for the origin of
the magnetic fields in which magnetars arise from a high baryon
density ( phase transition) magnetized core which forms when they are
born. The core magnetic field is initially shielded by the ambient
high conductivity plasma. With time the shielding currents dissipate
transporting the core field out, first to the crust and then breaking
through the crust to the surface of the star. Recent observations
provide support for this model which accounts for several properties
of magnetars and also enables us to identify new magnetars. -
Orientation matters: interaction effects in topological insulators and superconductors
Shinsei Ryu University of Illinois at Urbana-Champaign (UIUC)
Topological phases of matter are phases of matter which are not characterized
by classical local order parameters of some sort. Instead, it is the global properties
of quantum many-body ground states which distinguish one topological phase from
another. One way to detect such global properties is to put the system on a topologically
non-trivial space (spacetime). For example, topologically ordered phases in (2+1)
dimensions exhibit ground state degeneracy which depends on the topology of the spatial manifold.
In this talk, I will discuss how one can use a {\it unoriented} space (spacetime)
to detect non-trivial properties of topological phases of matter in the presence
of discrete spacetime symmetry, such as time-reversal or reflection symmetry.
In particular, I will show how interaction effects on topological insulators and
superconductors can be understood using quantum anomalies on unoriented spacetime. -
Multitude of percolative orders: Infinite cascades of geometric phase transitions
Gennady Chitov Laurentian University
The evolution of many kinetic processes in 1+1 dimensions results in 2D directed percolative landscapes. The active phases of those models possess numerous hidden geometric orders characterized by distinct percolative patterns. From Monte-Carlo simulations of the directed percolation (DP) and the contact process (CP) we demonstrate the emergence of those patterns at specific critical points as a result of continuous phase transitions.These geometric transitions belong to the DP universality class and their nonlocal order parameters are the capacities of corresponding backbones. The multitude of conceivable percolative ordering patterns implies the existence of infinite cascades of such transitions in the models considered. We conjecture that such cascades of transitions is a generic feature of percolation as well as many other transitions with non-local order parameters.
-
What the Reeh-Schielder theorem tells us about relativistic causality, or, Can experimenters in a lab on Earth create a Taj Mahal on the back of the moon?
Wayne Myrvold Western University
The Reeh-Schlieder theorem says, roughly, that, in any reasonable quantum field theory, for any bounded region of spacetime R, any state can be approximated arbitrarily closely by operating on the vacuum state (or any state of bounded energy) with operators formed by smearing polynomials in the field operators with functions having support in R. This strikes many as counterintuitive, and Reinhard Werner has glossed the theorem as saying that “By acting on the vacuum with suitable operations in a terrestrial laboratory, an experimenter can create the Taj Mahal on (or even behind) the Moon!” This talk has two parts. First, I hope to convince listeners that the theorem is not counterintuitive, and that it follows immediately from facts that are already familiar fare to anyone who has digested the opening chapters of any standard introductory textbook of QFT. In the second, I will discuss what we can learn from the theorem about how relativistic causality is implemented in quantum field theories.
-
Supersymmetric flavors on curved space and a precision test of AdS/CFT
Christoph Uhlemann Vrije Universiteit Brussel
Quantum field theory on curved space has long been studied for its interesting phenomenology, and more recently also as a means to obtain non-perturbative results in supersymmetric theories. In this talk I will describe the holographic dual for N=4 SYM coupled to massive N=2 flavors on spaces of constant curvature. With that in hand, I will discuss a topology-changing phase transition on S^4 and confront holographic computations with exact field theory results obtained using supersymmetric localization.
-
Kinetic Terms in Massive gravity
Is the graviton a truly massless spin-2 particle, or can the graviton have a small mass? If the mass of the graviton is of order the Hubble scale today, it can potentially help to explain the observed cosmic acceleration. Previous attempts to study massive gravity have been spoiled by the fact that a generic potential for the graviton leads to an instability called the Boulware-Deser ghost. Recently, a special potential has been constructed which avoids this problem while maintaining Lorentz invariance. In this talk I will present recent arguments that suggest that the requirement of avoiding the Boulware-Deser ghost (or other degrees of freedom) is so powerful that the kinetic term for a massive graviton is fixed as well. In fact it must be exactly the same as in General Relativity. This is remarkable as we derive the structure of General Relativity on the basis of stability requirements, not on a symmetry principle.