In the coming years, LHC experiments will measure Higgs properties, such as its couplings, with increasing precision. Electron-positron Higgs factories, such as the ILC or TLEP, would be able to achieve even better precision. In this talk, I will discuss some of the physics questions that can be addressed by a precision Higgs coupling measurement program. First, the issue of naturalness of the electroweak scale can be addressed in a robust, model-independent manner. Second, the possibility of a first-order electroweak phase transition can be definitively probed, testing one of the necessary conditions of electroweak baryogenesis scenario.
A variable speed of light (VSL) cosmology is developed with a spontaneous breaking of Lorentz invariance in the early universe. A non-minimal electromagnetic coupling to curvature and the resulting quantum electrodynamic vacuum polarization dispersive medium can produce c >> c0 in the early universe, where c0 is the measured speed of light today. Higher derivative curvature contributions to the effective gravitational action and quantum gravity vacuum polarization can produce a dispersive medium and a large increase in the speed of gravitational waves cg >> cg0 in the early universe, where cg0 is the speed of gravitational waves today. The initial value problems of cosmology are solved: the horizon and flatness problems. The model predicts primordial scalar and tensor fluctuation spectral indices ns=0.96 and nt=- 0.04, respectively. The BICEP2 observation of r=0.2 yields r/nt=-5 which is close to the single-field inflationary consistency condition r/nt=-8.
Rideout and Sorkin proposed a classical dynamics for causal sets based upon a sequential growth model. Comparing it with models for sequential growth in other systems, and with the dual goals of generating manifold-like causal sets and finding a quantum dynamics for them, we propose some modifications to their model. The resulting, admittedly speculative, proposal is a type of quantum random walk. We explore its properties in some simple cases.
In scalar-tensor gravity, black holes do not obey the Jebsen-Birkhoff theorem. Non-isolated black holes can be highly dynamical and the teleological concept of event horizon is replaced by the apparent or trapping horizon. Dynamical solutions describing inhomogeneities embedded in cosmological "backgrounds" and the phenomenology of their apparent horizons, which often appear/vanish in pairs, will be described. Isolated black holes, in contrast, have no hair and are the same as in general relativity.
We identify a new non-linear neutrino wake effect, due to the streaming motions of neutrinos relative to dark matter, analogous to the Tseliakhovich-Hirata effect. We compute the effect in moving background perturbation theory, compare to direct n-body simulations, and forecast its observability in current and future surveys. Depending on neutrino mass, this effect could be observable in upcoming surveys through a cross correlation dipole in lensing and galaxies. Unlike previous cosmological neutrino effects, this depends primarily on neutrino mass, making it complementary to measurements that depend on neutrino density.
Quantum information and quantum metrology can be used to study gravitational effects such as gravitational waves and the universality of the equivalence principle. On one hand, the possibility of carrying out experiments to probe gravity using quantum systems opens an avenue to deepen our understanding of the overlap of these theories. On the other hand, incorporating relativity in quantum technologies promises the development of a new generation of relativistic quantum applications of relevance in Earth-based and space-based setups. In this talk, I will introduce a framework for the application of quantum information and quantum metrology techniques to relativistic quantum fields. I will show how, using this framework, we have been able to develop an accelerometer and a gravitational wave detector which exploit both quantum and relativistic effects. Moreover, our framework can be used to estimate with high precision spacetime parameters such as the Earth's Schwarzchild radius and the gravitational constant.
We provide additional evidence that supersymmetrical quantum mechanical systems can contain a remarkable amount of information about supersymmetrical field theories in greater than one dimension.
There is a proposed dS/CFT duality in 3+1 dimensions, with higher-spin gravity in the bulk subject to Bunch-Davies boundary conditions. I consider replacing these with antipodally symmetric conditions, which allow for real values of the bulk fields. I present spanning sets of solutions in global dS_4 for free gauge fields of all spins (including photons and gravitons), and use them to establish relations between antipodal symmetry and asymptotic behavior. Some of these relations can be extended to interacting theories, including ordinary and higher-spin gravity. I discuss the implications for antipodally symmetric dS/CFT.
This talk will try to highlight some basic problems connected with conclusions uncritically drawn from well known works. These include: 1. The Schwarzschild solution 2. The formation of black holes by gravitational collapse 3. The no hair theorem 4. The principle of equivalence in the very early universe.
I will describe the relationship between radiated energy and entanglement entropy of massless fields at future null infinity (the "Page curve") in two-dimensional models of black hole evaporation. I will use this connection to derive a general feature of any unitary-preserving evaporation scenario: the Bondi mass of the hole must be non-monotonic. Time permitting, I will comment on time scales in such scenarios.
In the past few years substantial evidence has been collected that points to coexistence of charge correlations with long range superconductivity in underdoped cuprate superconductors. In this talk I will review some of this evidence, then show that a charge density wave with precisely the same signatures is a natural instability of an antiferromagnetic metal, and finally derive some phenomenological consequences, with special focus on quantum oscillation experiments.
Recent numerical simulations [1] have suggested that two dimensional superfluid turbulence is characterized by a direct cascade of energy to small length scales, in contrast to the inverse cascade of normal fluids, where energy is transported to large length scales. This direct cascade is characterized by many vortex-antivortex annihilation events. Recent experimental work [2] on Bose-Einstein condensates appears to demonstrate qualitatively similar physics. I will discuss recent work in progress towards identifying the physical mechanism underlying this direct cascade, using techniques of effective field theory.