How sure are you that spacetime is continuous? One approach to quantum gravity, causal set theory, models spacetime as a discrete structure: a causal set. This talk begins with a brief introduction to causal sets, then describes a new approach to modelling a quantum scalar field on a causal set. We obtain the Feynman propagator for the field by a novel procedure starting with the Pauli-Jordan commutation function. The candidate Feynman propagator is shown to agree with the continuum result. This model opens the door to physical predictions for scalar matter on a causal set.
It has been conjectured that higher-dimensional rotating black holes become unstable at a sufficiently large value of the rotation, and that new black holes with pinched horizons appear at the threshold of the instability. We search numerically, and find, the stationary axisymmetric perturbations of Myers-Perry black holes with a single spin that mark the onset of the instability and the appearance of the new black hole phases. We also find new ultraspinning Gregory-Laflamme instabilities of rotating black strings and branes.
We review some recent results on tachyon nonperturbative solutions of the nonlocal, lowest-level, effective action of string field theory. It is shown how nonlocality is encoded in a spacetime diffusion equation and how the latter emerges from the symmteries of the full, background-independent theory.
In 1981 Bill Unruh showed that the equation of motion for sound waves in a
convergent fluid flows is given by a wave equation in an acoustic metric
geometry. More importantly it is possible to set up sonic horizons in
transsonic flows, and thus in principle to mimic experimentally the
black-hole evaporation process. Almost 30 years later we have set up an experiment at the University of British Columbia to find out if indeed it is possible to detect (traces of) black hole radiation. We will discuss the necessary theoretical milestones, such as the effective field theory description for water to explore the robustness of Hawking radiation,
and the avoidance of shock waves using surface waves rather then sound
waves. In theory we should be able to detect the classical component of the thermal emission of black holes in our system and answer the ultimate question: How much do we trust our effective quantum field theory in curved spacetimes?
I will survey some open problems posed by experiments on condensed matter systems, such as the high temperature superconductors. I will argue that their solutions require analyses of strong-coupling regimes which cannot be addressed by conventional field-theoretic means. I will describe insights drawn from the AdS/CFT correspondence, and discuss the connections to theories with simple gravity duals.
We derive constraints on the sign of couplings in an effective Higgs Lagrangian using prime principles such as the naturalness principle, global symmetries, and unitarity. Specifically, we study four dimension-six operators, O_H, O_y, O_g, and O_gamma, which contribute to the production and decay of the Higgs boson at the Large Hadron Collider (LHC), among other things. Assuming the Higgs is a fundamental scalar, we find: 1) the coefficient of O_H is positive except when there are triplet scalars, resulting in a reduction in the Higgs on-shell coupling from their standard model (SM) expectations if no other operators contribute, 2) the linear combination of O_H and O_y controlling the overall Higgs coupling to fermion is always reduced, 3) the sign of O_g induced by a new colored fermion is such that it interferes destructively with the SM top contribution in the gluon fusion production of the Higgs, if the new fermion cancels the top quadratic divergence in the Higgs mass, and 4) the correlation between naturalness and the sign of O_gamma is similar to that of O_g, when there is a new set of heavy electroweak gauge bosons. Next considering a composite scalar for the Higgs, we find the reduction in the on-shell Higgs couplings persists. If further assuming a collective breaking mechanism as in little Higgs theories, the coefficient of O_H remains positive even in the presence of triplet scalars. In the end, we conclude that the gluon fusion production of the Higgs boson is reduced from the SM rate in all composite Higgs models. Our study suggests a wealth of information could be revealed by precise measurements of the Higgs couplings, providing strong motivations for both improving on measurements at the LHC and building a precision machine such as the linear collider.
I present an overview of how inspiral-merger-ringdown (IMR) waveforms are currently being used within LIGO and Virgo search efforts. I'll discuss search strategies from the two major astrophysics working groups within t he LIGO/Virgo collaboration searching for transient gravitational-wave signals - the Compact Binary Coalescence group and the Burst Group.
For masses where the inspiral, merger and ring-down phases are prominent in the LIGO/Virgo band both working groups have developed pipelines that are sensitive to these systems and are now trying to work together to make a joint statement about LIGO and Virgo's sensitivity to IMR systems.
A recent breakthrough in quantum computing has been the realization that quantum computation can proceed solely through single-qubit measurements on an appropriate quantum state. One exciting prospect is that the ground or low-temperature thermal state of an interacting quantum many-body system can serve as such a resource state for quantum computation. The system would simply need to be cooled sufficiently and then subjected to local measurements. It would be unfortunate, however, if the usefulness of a ground or low-temperature thermal state for quantum computation was critically dependent on the details of the system's Hamiltonian; if so, engineering such systems would be difficult or even impossible. A much more powerful result would be the existence of a robust ordered phase which is characterized by the ability to perform measurement-based quantum computation. I’ll discuss some recent results on the existence of such a computational phase of matter. I’ll first outline some positive results on a phase of a toy model that contains the cluster state. Then, in a realistic model of coupled spin-1 particles, I’ll demonstrate the existence of a computational phase. This result is obtained by using a local measurement sequence to “renormalize” the state to a computationally-universal fixed point. Together, these results reveal that the characterization of computational phases of matter has a rich, complex structure – one which is still poorly understood. Joint work with Gavin Brennen, Akimasa Miyake, and Joseph Renes.
Gravitational waves provide a unique way to study the Universe. From
2005 to 2007, the Laser Interferometer Gravitational-wave Observatory
(LIGO) took data at design sensitivity. After describing gravitational waves and how LIGO works, I will discuss the status of searches for those waves and current astronomical constraints imposed by those searches. Data taking resumed in summer 2009 with enhanced LIGO detectors and the European Virgo detectors. I will discuss plans for combined electromagnetic and gravitational observing campaigns. Finally, I will highlight the prospects for gravitational-wave astronomy with Advanced LIGO over the next decade.
Underlying the standard cosmological model is the assumption that it is possible to coarse-grain the energy density of the Universe, and that the dynamical and optical properies of space-time should be well modelled by the result. However, even if the average coarse-grained geometry does have the same dynamical properties as the fine-grained system it is intended to imitate, there are good reasons to suspect that the optical properties may be different. To investigate this we consider a simple model of the Universe in which the matter content is in the form of uniformly distributed discrete islands, rather than a continuous fluid. It is found that in the appropriate limits the resulting large-scale dynamics of the model approach those of an FRW universe, while the optical properties do not. We find the angular diameter distance, luminosity distance and redshifts that would be measured by observers inside such a space-time, and use preliminary results to show that the effect on estimates of the cosmological constant can be of the order of 10%.
Ultrarelativistic heavy-ion collisions are one of the most difficult problems for theoretical physicists: they probe non-abelian dynamics deep in the non-perturbative (strong coupling) regime in a many-body system, are highly dynamical (strong gradients), exhibit collective behavior, and involve phase transitions. Fluid dynamics with input from holography is surprisingly good at describing some aspects of experimental data in heavy-ion collisions. I will review some of this successful description, its limitations, and point out open problems that one may be able to understand using gauge/gravity duality.
A closer look at some proposed Gedanken-experiments on BECs promises to shed light on several aspects of reduction and emergence in physics. These include the relations between classical descriptions and different quantum treatments of macroscopic systems, and the emergence of new properties and even new objects as a result of spontaneous symmetry breaking.