In my talk I would like to discuss the present status of Doubly Special Relativity. DSR is an extension of Special Relativity aimed at describing kinematics of particles and fields in the regime where (quantum) gravity effects might become relevant. I will discuss an interplay between DSR physics and mathematics of Hopf algebras.
In this talk we will explore a "toy model" of quantum theory that is similar to actual quantum theory, but uses scalars drawn from a finite field. The set of possible states of a system is discrete and finite. Our theory does not have a quantitative notion of probability, but only makes the "modal" distinction between possible and impossible measurement results. Despite its very simple structure, our toy model nevertheless includes many of the key phenomena of actual quantum systems: interference, complementarity, entanglement, nonlocality, and the impossibility of cloning.