A lattice gauge theory is described by a redundantly large vector space that is subject to local constraints, and it can be regarded as the low energy limit of a lattice model with a local symmetry. I will describe a coarse-graining scheme capable of exactly preserving local symmetries. The approach results in a variational ansatz for the ground state(s) and low energy excitations of a lattice gauge theory. This ansatz has built-in local symmetries, which are exploited to significantly reduce simulation costs. I will describe benchmark results in the context of Kitaev’s toric code with a magnetic field or, equivalently, Z2 lattice gauge theory, for lattices with up to 16 x 16 sites (16^2 x 2 = 512 spins) on a torus.
Closed quantum systems evolve unitarily and therefore cannot converge in a strong sense to an equilibrium state starting out from a generic pure state. Nevertheless for large system size one observes temporal typicality. Namely, for the overwhelming majority of the time instants, the statistics of observables is practically indistinguishable from an effective equilibrium one. In this talk we will discuss he Loschmidt echo (LE) to study this sort of unitary equilibration after a quench. In particular we ll address the issue of typicality with respect the initial state preparation and the influence of quantum criticality of the long-time probability distribution of LE.
This talk will be concerned with three new results (or a subset thereof) on the idea of grasping quantum many-body systems in terms of suitable tensor networks, such as finitely correlated states (FCS), tree tensor networks (TTN), projected entangled pair states (PEPS) or entanglement renormalization (MERA). We will first briefly introduce some basic ideas and relate the feasibility of such approaches to entanglement properties and area laws.
We will then see that (a) surprisingly, any MERA can be efficiently encoded in a PEPS, hence in a sense unifying these approaches. (b) We will also find that the ground state-manifold of any frustration-free spin-1/2 nearest neighbor Hamiltonian can be completely characterized in terms of tensor networks, how all such ground states satisfy an area law, and in which way such states serve as ansatz states for simulating almost frustration-free systems. (c) The last part will be concerned with using flow techniques to simulate interacting quantum fields with finitely correlated state approaches, and with simulating interacting fermions using efficiently contractible tensor networks.
Max Planck Institute for Gravitational Physics - Albert Einstein Institute (AEI)
PIRSA:10050093
Matrix Product States (MPS) and their higher dimensional extensions, the Projected Entangled-Pair States (PEPS) can efficiently describe the ground and thermal states of interacting systems with short-range interactions. We will describe some mathematical properties of this families of states, as well as possible extensions. Work in collaboration with N. Schuch, D. Perez-Garcia, M. Sanz, M. Wolf, F. Verstraete and G. Sierra.