In the past year, motivated by physics, a rich structure has emerged from studying certain contour integrals in Grassmannians. Physical considerations single out a natural meromorphic form in G(k,n) with a cyclic structure. The residues obtained from these contour integrals have been shown to be invariants of a Yangian algebra. These residues also control what happens deep inside collisions of protons taking place at colliders like the Large Hadron Collider or LHC at CERN. Applications of the Global Residue Theorem give rise to relations among residues which ensure important physical properties.
I will give an overview of recent work with Davide Gaiotto and Greg Moore. This work relates the phenomenon of ''wall-crossing'' for BPS states in four-dimensional N=2 theories to a new construction of hyperkahler metrics. These metrics include in particular the metrics on moduli spaces of solutions to Hitchin equations. I will also briefly describe some extensions of this work to incorporate line and surface operators in the N=2 theory (in progress).
The study of D-branes at singular points of Calabi-Yau threefolds has revealed interesting connections between certain noncommutative algebras and singular algebraic varieties. In many respects, the choice of an appropriate noncommutative algebra is analogous to finding a resolution of singularities of the variety. We will explain this connection in detail, and outline a program for studying such ''noncommutative resolutions'' globally, for compact algebraic (Calabi--Yau) threefolds.
The Hilbert scheme X[n] of n points on variety X parameterizes length n, zero dimensional subschemes of X. When X is a smooth surface, X[n] is also smooth and a beautiful formula for its motive was determined by Gottsche. When X is a threefold, X[n] is in general singular, of the wrong dimension, and reducible. However if X is a smooth Calabi-Yau threefold, X[n] has a canonical virtual motive --- a motification of the degree zero Donaldson-Thomas invariants. We give a formula analogous to Gottsche's for the virtual motive of X[n]. The key computation gives a q-refinement of the classical formula of MacMahon which counts 3D partitions.
The Hilbert scheme X[n] of n points on variety X parameterizes length n, zero dimensional subschemes of X. When X is a smooth surface, X[n] is also smooth and a beautiful formula for its motive was determined by Gottsche. When X is a threefold, X[n] is in general singular, of the wrong dimension, and reducible. However if X is a smooth Calabi-Yau threefold, X[n] has a canonical virtual motive --- a motification of the degree zero Donaldson-Thomas invariants. We give a formula analogous to Gottsche's for the virtual motive of X[n]. The key computation gives a q-refinement of the classical formula of MacMahon which counts 3D partitions.
Clifford algebras arose in Dirac's work on the relativistic wave equation in quantum mechanics. Using the Clifford algebra associated to a quadratic form on a finite dimensional vector space, one can reduce the relativistic wave equation, a PDE of order two, to a system of linear PDEs. Similarly, one can use matrix representations of generalized (i.e. higher degree) Clifford algebras to reduce a PDE of higher degree. These generalized Clifford algebras have been the subject of ongoing research since late 1980s. In this talk, we will discuss generalized Clifford algebras, known results about their representations, and results of ongoing work in this direction.
We discuss recent progress on the rigorous description of the dynamics of the energy concentration sets in the abelian Higgs model. This is joint work with R. Jerrard.
There have been many attempts to define quasilocal mass for a spacelike 2-surface in a spacetime by the Hamilton-Jacobi method. The essential difficulty in this approach is the choice of the background configuration to be subtracted from the physical Hamiltonian. The quasilocal mass should be positive for general surfaces, but on the other hand should be zero for surfaces in the flat spacetime. In this talk, I shall describe how to use isometric embeddings into the Minkowski space to overcome this difficulty and propose a new definition of gauge-independent quasi-local mass that has the desired properties, in addition to other natural requirements for a mass. This talk is based on a joint work with Shing-Tung Yau at Harvard.
We introduce a projective hypersurface ''normal form'' for a class of K3 surfaces which generalizes the classical Weierstrass normal form for complex elliptic curves. A geometric two-isogeny relates these K3 surfaces to the Kummer K3 surfaces of principally polarized abelian surfaces, with the normal form coefficients naturally identifying with the Igusa basis of Siegel modular forms of degree two. These results are reinterpreted through the lens of the Kuga-Satake Hodge Conjecture, and seen as a prediction coming from mirror symmetry.
The topological recursion of Eynard and Orantin has found many applications in various areas of mathematics. In this talk I will discuss the recursion from the point of view of Hurwitz numbers and local mirror symmetry. I will explain the mathematics underlying the recursion, its relation with the cut-and-join equation, and explore first steps towards proving (and understanding geometrically) the appearance of the recursion in local mirror symmetry.
The Planck-weak hierarchy is investigated in an extradimensional, soft-wall model originally proposed by Batell and Gherghetta. In this model the soft-wall is dynamically generated by background fields that, in the Einstein frame, cause the metric factor to deviate from anti-de Sitter by a power-law of the conformal coordinate. This talk will demonstrate that in order to achieve the appropriate Planck-weak hierarchy, the power of the conformal coordinate must be less than one. This in turn implies that the gravitational sector contains scalar fields that act like unparticles without a mass gap.