Using 2-dimensional CGHS black holes, I will argue that information is not lost in the Hawking evaporation because the quantum space-time is significantly larger than the classical one. I will begin with a discussion of the conceptual underpinnings of problem and then introduce a general, non-perturbative framework to describe quantum CGHS black holes. I will show that the Hawking effect emerges from it in the first approximation. Finally, I will introduce a mean field approximation to argue that, when the back reaction is included, future null infinity is `long enough\' to capture full information contained in pure states at past null infinity and that the S-matrix is unitary. There are no macroscopic remnants.


Talk Number PIRSA:08120016
Speaker Profile Abhay Ashtekar
Collection Quantum Gravity