Collection Number C20034
Collection Date -
Collection Type Conference/School

Tensor networks for LGT: beyond 1D

Mari-Carmen Banuls Max Planck Institute for Gravitational Physics - Albert Einstein Institute (AEI)
The suitability of tensor network ansatzes for the description of physically relevant states in one dimensional lattice gauge theories (LGT) has been demonstrated in the last years by a large amount of systematic studies, including abelian and non-abelian LGTs, and including scenarios where traditional Monte Carlo approaches fail due to a sign problem. While this establishes a solid motivation to extend the program to higher dimensions, a similar systematic study in two dimensions using PEPS requires dealing with specific considerations.

Tensor networks for critical systems

Frank Verstraete Universiteit Gent
In this talk I will give an overview of tensor network approaches to critical systems. I will discuss entanglement scaling laws, show how PEPS can simulate systems with Fermi surfaces, and present some results for simulating systems in the continuum.

Tensor network models of AdS/qCFT

Jens Eisert Freie Universität Berlin
"AdS/CFT endows gravity in anti-de Sitter (AdS) spacetime with a dual description in certain conformal field theories (CFTs) with matching symmetries. Tensor networks on regular discretizations of AdS space provide natural toy models of AdS/CFT, but break the continuous bulk symmetries. In this talk, we discuss several aspects of such toy models based on tensor networks. We show that this produces a quasiregular conformal field theory (qCFT) on the boundary and rigorously compute its symmetries, entanglement properties, and central charge bounds, applicable to a wide range of existing models.

Ancilla qubit wavefunctions for the pseudogap metal phase of the cuprates

Subir Sachdev Harvard University
There is now significant experimental evidence that the physics of the underdoped cuprates is controlled by a metallic state with a Fermi surface whose volume does not equal the Luttinger value. However, there has been no proposed wavefunction for such a state for electrons in a single band. I will describe a wavefunction which involves tracing over 2 layers of ancilla qubits. The proposal also leads to a gauge theory for the transition to the conventional Fermi liquid state found at large doping.

Quantum Cellular Automata, Tensor Networks, and Area Laws

Ignacio Cirac Max Planck Institute for Gravitational Physics - Albert Einstein Institute (AEI)
Quantum Cellular Automata are unitary maps that preserve locality and respect causality. I will show that in one spatial dimension they correspond to matrix product unitary operators, and that one can classify them in the presence of symmetries, giving rise to phenomenon analogous to symmetry protection. I will then show that in higher dimensions, they correspond to other tensor networks that fulfill an extra condition and whose bond dimension does not grow with the system size. As a result, they satisfy an area law for the entanglement entropy they can create.

A tensor-network approach to fixed-point models of topological phases

Andreas Bauer Freie Universität Berlin
"I will introduce a tensor-network based language for classifying topological phases via fixed-point models. The "models" will be tensor networks formalizing a discrete Euclidean path integral living in a topological space-time, and can be obtained from Hamiltonian models by Trotterizing the imaginary time evolution. Topological fixed-point models are invariant under topology-preserving space-time deformations. Space-time manifolds and homeomorphisms can be combinatorially represented by graph-like "networks", which together with "moves" form a "liquid".

Quantum Extremal Islands Made Easy: Complexity on the brane

Shan-Ming Ruan Perimeter Institute for Theoretical Physics
We examine holographic complexity in the doubly holographic model to study quantum extremal islands. We focus on the holographic complexity=volume (CV) proposal for boundary subregions in the island phase. Exploiting the Fefferman-Graham expansion of the metric and other geometric quantities near the brane, we derive the leading contributions to the complexity and interpret these in terms of the generalized volume of the island derived from the higher curvature action for the brane gravity.

Noise-robustness and experimental data of wavelet-DMERA preparation for critical Ising ground state

Troy Sewell University of Maryland
Multi-scale tensor networks offer a way to efficiently represent ground states of critical systems and may be adapted for state-preparation on a quantum computer. The tensor network for a single scale specifies a quantum channel whose fixed-point is a subregion of the approximate critical ground state. The fixed-point of a noisy channel is perturbed linearly in the noise parameter from the ideal state, making local observables stable against errors for these iterative algorithms.