Collection Number S012
Collection Type Series
This series consists of talks in the areas of Particle Physics, High Energy Physics & Quantum Field Theory.

Matter Unification at the TeV scale: Flavour anomalies and muon (g-2)

Clara Murgui California Institute of Technology (Caltech)

Several anomalies have been recently reported by different laboratory experiments: the flavor anomalies involving B meson semileptonic and leptonic decays by the LHCb and B-factories, as well as the anomalous muon (g-2) by the Fermilab (g-2) collaboration. These deviations, if not coming from underestimated experimental or theoretical uncertainties, are pointing to new degrees of freedom around the few TeV scale.

Searching for New Physics at Muon Colliders

Cari Cesarotti Harvard University

A high energy muon collider complex can provide new and complementary discovery potential to the LHC or future hadron colliders. New spin-1 bosons are a motivated class of exotic new physics models. In particular leptoquarks, dark photons, and Lμ — Lτ models have distinct production channels at hadron and lepton machines. We study a vector leptoquark model at a muon collider with √ s = 3, 14 TeV within a set of both UV and phenomenologically motivated flavor scenarios.

Probing the scale of grand unification with gravitational waves

Valerie Domcke European Organization for Nuclear Research (CERN)

Cosmic strings arise as remnants of phase transitions in the early Universe, often related to theories of grand unification (GUTs). If such a phase transitions occurs at high energies, the resulting cosmic string network generates a sizable amount of gravitational waves. Most work so far has focused on the gravitational wave signal from topologically stable cosmic strings. In this talk I will introduce metastable cosmic strings, which are a generic consequence of many GUTs.

Heterodyne Detection of Axion Dark Matter

Asher Berlin SLAC National Accelerator Laboratory

Detecting ultralight axion dark matter has recently become one of the benchmark goals of future direct detection experiments. I will discuss a new idea to detect such particles whose mass is well below the micro-eV scale, corresponding to Compton wavelengths much greater than the typical size of tabletop experiments. The approach involves detecting axion-induced transitions between two quasi-degenerate resonant modes of a superconducting accelerator cavity.

Muon g-2: the showdown

Massimo Passera Istituto Nazionale di Fisica Nucleare (INFN)

The Muon g-2 experiment at Fermilab has recently confirmed Brookhaven's earlier measurement of the muon anomalous magnetic moment aμ. This new result increases the discrepancy Δaμ with the Standard Model (SM) prediction and strengthens its "new physics" interpretation as well as the quest for its underlying origin. In this talk I will review the SM prediction of the muon g-2, focusing on some of the latest developments, and discuss the connection of the discrepancy Δaμ to precision electroweak predictions via their common dependence on hadronic vacuum polarization effects.

A tale of two geometries

Tzu Chen Huang California Institute of Technology (Caltech)

It is known that constraints imposed by causality and unitarity of four-particle scattering amplitudes lead to non-trivial requirements on the low energy effective field theory coefficients. We introduce families of linear and nonlinear inequalities resulting from a systematic study of positive geometry structure hidden in those constraints.



Dark photons and the cosmic radiation background

Hongwan Liu Massachusetts Institute of Technology (MIT) - Center for Theoretical Physics

The dark photon is a well-motivated extension of the Standard Model which can mix with the regular photon. This mixing is enhanced whenever the dark photon mass matches the primordial plasma frequency, leading to resonant conversions between photons and dark photons. These conversions can produce observable cosmological signatures, including distortions to the cosmic radiation background.

Single Photon Detection of 1.5THz Radiation with the Quantum Capacitance Detector

Pierre Echternach NASA Jet Propulsion Laboratory (JPL)

Far-infrared spectroscopy can reveal secrets of galaxy evolution and heavy-element enrichment throughout cosmic time, and astronomers worldwide are designing cryogenic space telescopes for far-IR spectroscopy. The most challenging aspect is a far-IR detector which is both exquisitely sensitive (limited by the zodiacal-light noise in a narrow band (lambda/delta lambda ~1000)) and array able to tens of thousands of pixels.