Cosmologists at Perimeter Institute seek to help pin down the constituents and history of our universe, and the rules governing its origin and evolution. Many of the most interesting clues about physics beyond the standard model (e.g., dark matter, dark energy, the matter/anti-matter asymmetry, and the spectrum of primordial density perturbations], come from cosmological observations, and cosmological observations are often the best way to test or constrain a proposed modification of the laws of nature, since such observations can probe length scales, time scales, and energy scales that are beyond the reach of terrestrial laboratories.
We introduce a formalism allowing us to localize a certain class of theories with an infinite number of derivatives (nonlocal), which include effective actions of string field theory. The number of degrees of freedom is finite and the Cauchy problem, Hamiltonian and quantization are all well-defined. As applications, the rolling tachyon of cubic string field theory and some cosmological toy models are considered.
Hawking\'s black hole information paradox is one of the great thought experiments in physics. It points to a breakdown of some central principle of physics, though which one breaks down is still in dispute. It has led to the discovery of ideas that seem to be key to unifying quantum mechanics and gravity, namely the holographic principle and gauge/gravity duality. I review this subject, and discuss ongoing work and future directions.
I will summarize current observational constraints in cosmology with emphasis on what we have learned about the properties of the primordial density perturbations. I will describe future directions including observations of high redshift neutral hydrogen through is 21 cm line.