Cosmologists at Perimeter Institute seek to help pin down the constituents and history of our universe, and the rules governing its origin and evolution. Many of the most interesting clues about physics beyond the standard model (e.g., dark matter, dark energy, the matter/anti-matter asymmetry, and the spectrum of primordial density perturbations], come from cosmological observations, and cosmological observations are often the best way to test or constrain a proposed modification of the laws of nature, since such observations can probe length scales, time scales, and energy scales that are beyond the reach of terrestrial laboratories.
Astrophysical evidence indicates that the universe consists to about 25% of non-baryonic, cold Dark Matter, compared to merely ~4% of \'regular\' matter, composed of quarks and electrons. The existence of Dark Matter and Dark Energy is striking evidence for physics beyond the Standard Model, and understanding their nature ranks among the foremost questions in science today. If the bulk of matter in the universe consists of relic massive particles moving at non-relativistic speeds, we may be able to detect these particles in direct searches with low background experiments. This talk will focus on the search for weakly interacting massive particles (WIMPs), predicted in particular by theories invoking supersymmetry. The recoils of target nuclei resulting from elastically scattering WIMPs should be detectable in principle with sensitive detectors. I will review the current status of direct Dark Matter searches, and then elaborate on the XENON suite of experiments. The XENON Dark Matter program was established in 2002, and reached a major milestone with the installation of its first Dark Matter detector, XENON10, at the Gran Sasso underground laboratory in Italy. XENON10 reported the world-best limits on spin-independent WIMP-nucleon cross-sections last year. (CDMS-II has recently improved their limits even further.) Meanwhile, we are building the next generation detector XENON100 at the same location. The new detector will feature ten-fold greater fiducial mass and 100 times improved background. We anticipate first results by the end of the year. I will report on the status of XENON100 and its projected sensitivity, and conclude with an outlook on the prospects of the field.
I will discuss the possibilities for a post-standard-cosmological-model phenomenology based on the assumption that our universe was born in a tunneling event from an earlier \'Ancestor\' vacuum
We present the results from the MiniBooNE neutrino oscillations search in which no significant excess of events is observed above background in the energy range from 475 MeV to 3000 MeV. For lower energies an excess of events that is not consistent with a two neutrino oscillation model is observed. We present recent advances in the understanding of this excess, including a study of muon and electron neutrinos from the nearby NuMI neutrino source. The techniques used in the first oscillation analysis are discussed as well as tose of a recent analysis that combines two different electron neutrino candidate samples with a high statistics muon neutrino sample in the oscillations fit to reduce systematic uncertainties.
The sensitivity of inflationary models to Planck-suppressed operators motivates modeling inflation in string theory. The case of high-scale inflation is particularly interesting both theoretically and observationally. Observationally it yields a gravity wave (B mode polarization) signature, and theoretically it requires a large field excursion which is particularly sensitive to UV physics. I\'ll present a simple mechanism derived recently in collaboration with A. Westphal for obtaining large-field inflation, and hence a gravitational wave signature, from string theory. The simplest version of this mechanism, arising on twisted torus compactifications of string theory, yields an observationally distinctive version of chaotic inflation with a potential proportional to the 2/3 power of the inflaton, falsifiable on the basis of upcoming CMB measurements. This mechanism for extending the field range arises widely in string compactifications, though in all cases it requires sufficient symmetry to control the corrections to the slow-roll parameters. I will finish by describing further developments in this direction.
The atomic hydrogen gas left over from the Big Bang was affected by processes ranging from quantum fluctuations during the early epoch of inflation to irradiation by the first galaxies at late times. Mapping this gas through its resonant 21cm line serves a dual role as a powerful probe of both fundamental physics and astrophysics. Current cosmological data sets (such as galaxy surveys or the microwave background) cover only 0.1% of the comoving volume of the observable Universe. 21cm observations hold the potential of mapping matter through most of the remaining volume. Radio observatories are currently being designed and constructed with this goal in mind. The three-dimensional 21cm maps could potentially set unprecedented statistical constraints on the power spectrum of cosmic density fluctuations and its gravitational growth with cosmic time. The reduced uncertainties could allow for precise measurements of fundamental parameters, such as the mass of the neutrino or the equation of state of the dark energy (from acoustic oscillations in the 21cm power spectrum), and will test generic predictions of cosmic inflation for deviations of the density fluctuations from scale invariance and gaussianity. The measured gravitational growth of the fluctuations with cosmic time would constrain the nature of the dark matter or alternative theories of gravity.
After a brief introduction, where I review the properties of the \'good Dark Matter candidate\' and the status of accelerator, direct and indirect Dark Matter searches, I will show that a conclusive identification of DM particles can most likely be achieved only through a \'multidisciplinary\' approach, that combines together different detection techniques. I will place special emphasis on the upcoming Large Hadron Collider, and on the gamma-ray satellite GLAST (scheduled for launch on June 3, i.e. the day after the talk...)