The relation between loop quantum gravity (LQG) and ordinary quantum field theory (QFT) on a fixed background spacetime still bears many obstacles. When looking at LQG and ordinary QFT from a mathematical perspective it turns out that the two frameworks are rather different: Although LQG is a true continuum theory its Hilbert space is defined in terms of certain embedded graphs which are labeled by irreducible representations of SU(2). The natural arena for ordinary QFT, on the other hand, is a Fock space which strongly uses the metric properties of the underlying continuum spacetime. In this talk I will review this issue and show how one can use Born--Oppenheimer methods to further progress towards an understanding of (matter) quantum field theories from first principles.
Of all four forces only the weak interaction has experimentally exhibited parity violation. At the same time observations suggest that general relativity may require modification to account for dark matter and dark energy. Could it be that this modification involves gravitational parity violation? Many of the dominant approaches to quantum gravity, such as string theory and loop quantum gravity, point to an effective parity violating extension to general relativity known as Chern-Simons General Relativity (CSGR). In this colloquium I will discuss the uniqueness and phenomenological implications of parity violation in CSGR. In particular, I will discuss how CSGR can work together with inflation to generate the cosmic baryon asymmetry in a most economical fashion, through gravitational waves; and its predictions for upcoming CMB polarization experiments. I will also discuss current predictions of CSGR on binary pulsars, neutron stars and prospects for the LISA/LIGO gravitational wave detectors. While we focus on a specific theory for concreteness, some of the results presented in this colloquium can be seen as model independent.
Thanks to the ongoing Planck mission, a new window will be opened on the
properties of the primordial density field, the cosmological parameters,
and the physics of reionization. Much of Planck's new leverage on these
quantities will come from temperature measurements at small angular
scales and from polarization measurements. These both depend on the
details of cosmological hydrogen recombination; use of the CMB as a
probe of energies greater than 10^16 GeV compels us to get the ~eV scale
atomic physics right.
One question that remains is how high in hydrogen principle quantum
number we have to go to make sufficiently accurate predictions for
Planck. Using sparse matrix methods to beat computational difficulties,
I have modeled the influence of very high (up to and including n=200)
excitation states of atomic hydrogen on the recombination history of the
primordial plasma, resolving all angular momentum sub-states separately
and including, for the first time, the effect of hydrogen quadrupole
transitions. I will review the basic physics, explain the resulting
plasma properties, discuss recombination histories, and close by
discussing the effects on CMB observables.
For generic field theories at finite temperature, a power-law falloff of correlation functions of conserved currents at long times is a prediction of non-linear hydrodynamics. We demonstrate, through a one-loop computation in Einstein gravity in Anti de Sitter space, that this effect is reproduced by the dynamics of black hole horizons. The result is in agreement with the gauge-gravity correspondence.