We explore a new scenario explaining mass origin of standard model (SM) particles without a Higgs boson. In this framework SM W, Z gauge bosons and fermions are composites getting masses from confinement of substructure at IR (conformal symmetry breaking). Therefore here SM electroweak gauge symmetry and its breaking are IR emergent phenomena. Using AdS/CFT we build a calculable warped 5D model. Realistic mass spectrum and good fit to electroweak precision data (S, T parameters) can be obtained. Furthermore the composite nature of W,Z may offer novel solution for WW scattering unitarization and predicts deviation from SM which can lead to distinctive signatures at the LHC.
How sure are you that spacetime is continuous? One approach to quantum gravity, causal set theory, models spacetime as a discrete structure: a causal set. This talk begins with a brief introduction to causal sets, then describes a new approach to modelling a quantum scalar field on a causal set. We obtain the Feynman propagator for the field by a novel procedure starting with the Pauli-Jordan commutation function. The candidate Feynman propagator is shown to agree with the continuum result. This model opens the door to physical predictions for scalar matter on a causal set.
It has been conjectured that higher-dimensional rotating black holes become unstable at a sufficiently large value of the rotation, and that new black holes with pinched horizons appear at the threshold of the instability. We search numerically, and find, the stationary axisymmetric perturbations of Myers-Perry black holes with a single spin that mark the onset of the instability and the appearance of the new black hole phases. We also find new ultraspinning Gregory-Laflamme instabilities of rotating black strings and branes.