Amanda Peet received her Ph.D. at Stanford University and currently is Associate Professor at the University of Toronto, her “intellectual home base.” She is also an Affiliate Member of Perimeter Institute. Amanda's goal is to understand the fundamental dynamics of all forces and particles seen so far in Nature, especially gravity. Broadly: She studies the quantum dynamics of interactions between gravity and matter using string theory, with applications to black holes and cosmology, and links to gauge theory and particle physics. Past work has focused on the black hole information paradox, black hole entropy, D-brane models of black holes, duality, holography, building of new geometries, spacetime singularity resolution, and cosmology. Amanda continues to develop these interests, as well as develop others as new particle accelerator data from LHC and cosmological data (further) influence the field.
In deBroglie-Bohm theory the quantum state plays the role of a guiding agent. In this seminar we will explore if this is a universal feature shared by all hidden variable theories or merely a peculiar feature of deBroglie-Bohm theory. We present the bare bones of a model in which the quantum state represents a probability distribution and does not act as a guiding agent. The theory is also psi-epistemic according to Spekken\'s and Harrigan\'s definition. For simplicity we develop the model for a 1D discrete lattice but the generalization to higher dimensions is straightforward. The ontic state consists of a definite particle position and in addition possible non-local links between spatially separated lattice points. These non-local links comes in two types: directed links and non-directed links. Entanglement manifests itself through these links. Interestingly, this ontology seems to be the simplest possible and immediately suggested by the structure of quantum theory itself. For N lattice points there are N*3^(N(N-1)) ontic states growing exponentially with the Hilbert space dimension N as expected. We further require that the evolution of the probability distribution on the ontic state space is dictated by a master equation with non-negative transition rates. It is then easy to show that one can reproduce the Schroedinger equation if an only if there are positive solutions to a gigantic system of linear equations. This is a highly non-trivial problem and whether there exists such positive solutions or not is still not clear to me. Alternatively one can view this set of linear equations as constraints on the possible types of Hamiltonians. We end by speculating how one might incorporate gravity into this theory by requiring permutation invariance of the dynamical evolution law.
New low frequency radio telescopes currently being built open up the possibility of observing the 21 cm radiation before the Epoch of Reionization in the future, in particular at redshifts 200 ≥ z ≥ 30, also known as the dark ages. At these high redshifts, Cosmic Microwave Back-ground (CMB) radiation is absorbed by neutral hydrogen at its 21 cm hyperfine transition. This redshifted 21 cm signal thus carries information about the state of the early Universe and can be used to test fundamental physics. We study the constraints these observations can put on the variation of fundamental constants and on fundamental mass scales. We show that the 21 cm radiation is very sensitive to the variations in the fine structure constant and can in principle place constraints comparable to or better than the other astrophysical experiments. Cosmic strings, if they exist, contribute to the anisotropies in the primordial gas leaving an imprint on the 21 cm radiation. They can tell us about the fundamental mass scales involved in the theories beyond the standard model. We show that the 21 cm radiation can potentially probe cosmic strings of tension ~10−12 asumming intercommutation probability of 1. Making such observations will require radio telescopes of collecting area 10 − 106 km2 compared to ~ 1 km2 of current telescopes.